Jump to ContentJump to Main Navigation
Show Summary Details

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

IMPACT FACTOR 2015: 0.366
5-year IMPACT FACTOR: 0.385

SCImago Journal Rank (SJR) 2014: 0.351
Source Normalized Impact per Paper (SNIP) 2014: 0.611
Impact per Publication (IPP) 2014: 0.434

Mathematical Citation Quotient (MCQ) 2015: 0.27

249,00 € / $374.00 / £187.00*

See all formats and pricing

Select Volume and Issue


On the existence of solutions for singular boundary value problem of third-order differential equations

1School of Mathematics and Physics, Changzhou University, Changzhou, 213164, P.R. China

2Department of Applied Mathematics, Shandong University of Science and Technology, Qingdao, 266510, P.R. China

© 2010 Mathematical Institute, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Mathematica Slovaca. Volume 60, Issue 4, Pages 485–494, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: 10.2478/s12175-010-0027-5, July 2010

Publication History

Published Online:


The singular boundary value problems of third-order differential equations $$ \begin{array}{*{20}c} { - u'''(t) = h(t)f(t,u(t)), t \in (0,1),} \\ {u(0) = u'(0) = 0, u'(1) = \alpha u'(\eta )} \\ \end{array} $$ are considered under some conditions concerning the first eigenvalues corresponding to the relevant linear operators, where h(t) is allowed to be singular at both t = 0 and t = 1, and f is not necessary to be nonnegative. The existence results of nontrivial solutions and positive solutions are given by means of the topological degree theory.

MSC: Primary 34B10, 34B18

Keywords: singular; nontrivial solutions; positive solutions; topology degree

  • [1] ANDERSON, D.: Green’s function for a third-order generalized right focal problem, J. Math. Anal. Appl. 288 (2003), 1–14. http://dx.doi.org/10.1016/S0022-247X(03)00132-X [CrossRef]

  • [2] CABADA, A.: The method of lower and upper solutions for second, third, fourth and higher order boundary value problems, J. Math. Anal. Appl. 185 (1994), 302–320. http://dx.doi.org/10.1006/jmaa.1994.1250 [CrossRef]

  • [3] CHU, J.— ZHOU, Z.: Positive solutions for singular non-linear third-order periodic boundary value problems, Nonlinear Anal. 64 (2006), 1528–1542. http://dx.doi.org/10.1016/j.na.2005.07.005 [CrossRef]

  • [4] DEIMLING, K.: Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

  • [5] GUO, D.— LAKSHMIKANTHAM, V.: Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.

  • [6] KONG, L.— WANG, S.— WANG, J.: Positive solution of a singular nonlinear third-order periodic boundary value problem, J. Comput. Appl. Math. 132 (2001), 247–253. http://dx.doi.org/10.1016/S0377-0427(00)00325-3 [CrossRef]

  • [7] LI, S.: Positive solutions of nonlinear singular third-order two-point boundary value problem, J. Math. Anal. Appl. 323 (2006), 413–425. http://dx.doi.org/10.1016/j.jmaa.2005.10.037 [CrossRef]

  • [8] LIU, Z.— UME, J.— KANG, S.: Positive solutions of a singular nonlinear third order two-point boundary value problem, J. Math. Anal. Appl. 326 (2007), 589–601. http://dx.doi.org/10.1016/j.jmaa.2006.03.030 [CrossRef]

  • [9] SUN, J.— LIU, Y.: Multiple positive solutions of singular third-order periodic boundary value problem, Acta Math. Sci. Ser. B Engl. Ed. 25 (2005), 81–88.

  • [10] SUN, Y.: Positive solutions of singular third-order three-point boundary value problem, J. Math. Anal. Appl. 306 (2005), 589–603. http://dx.doi.org/10.1016/j.jmaa.2004.10.029 [CrossRef]

  • [11] SUN, Y.— LIU, L.: Positive solutions of nonlinear third-order three point boundary value problem, Far East J. Appl. Math. 12 (2003), 79–91.

  • [12] YAO, G.: Successive iteration of positive solution for a discontinuous third-order boundary value problem, Comput. Math. Appl. 53 (2007), 741–749. http://dx.doi.org/10.1016/j.camwa.2006.12.007 [Web of Science] [CrossRef]

  • [13] YAO, Q.: The existence and multiplicity of positive solutions for a third-order three-point boundary value problem, Acta Math. Appl. Sinica (English Ser.) 19 (2003), 117–122. http://dx.doi.org/10.1007/s10255-003-0087-1 [CrossRef]

  • [14] YAO, Q.: The existence of solution for a third-order two-point boundary value problem, Appl. Math. Lett. 15 (2002), 227–232. http://dx.doi.org/10.1016/S0893-9659(01)00122-7 [CrossRef]

  • [15] ZHANG, G.— SUN, J.: Positive solutions of m-point boundary value problems, J. Math. Anal. Appl. 291 (2004), 406–418. http://dx.doi.org/10.1016/j.jmaa.2003.11.034 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xuezhe Lv, Libo Wang, and Minghe Pei
Abstract and Applied Analysis, 2014, Volume 2014, Page 1

Comments (0)

Please log in or register to comment.