Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

See all formats and pricing
More options …
Volume 60, Issue 5


On the notion of coexistence in quantum mechanics

Paul Busch / Jukka Kiukas / Pekka Lahti
Published Online: 2010-10-08 | DOI: https://doi.org/10.2478/s12175-010-0039-1


The notion of coexistence of quantum observables was introduced to describe the possibility of measuring two or more observables together. Here we survey the various different formalisations of this notion and their connections. We review examples illustrating the necessary degrees of unsharpness for two noncommuting observables to be jointly measurable (in one sense of the phrase). We demonstrate the possibility of measuring together (in another sense of the phrase) noncoexistent observables. This leads us to a reconsideration of the connection between joint measurability and noncommutativity of observables and of the statistical and individual aspects of quantum measurements.

MSC: Primary 81P05, 81P15, 81P16

Keywords: coexistent observables; joint measurability; noncommutativity; unsharpness

  • [1] Ali, S. T.— Prugovečki, E.: Classical and quantum statistical mechanics in a common Liouville space, Phys. A 89 (1977), 501–521. http://dx.doi.org/10.1016/0378-4371(77)90078-4CrossrefGoogle Scholar

  • [2] Berg, C.— Christensen, J.— Ressel, P.: Harmonic Analysis on Semigroups, Springer, New York, 1984. Google Scholar

  • [3] Billingsley, P.: Probability and Measure (2nd ed.), John Wiley & Sons, New York, 1986. Google Scholar

  • [4] Busch, P.: Unbestimmtheitsrelation und simultane Messungen in der Quantentheorie. PhD. Thesis, University of Cologne, Cologne, 1982 [English translation: Indeterminacy relations and simultaneous measurements in quantum theory, Internat. J. Theoret. Phys. 24 (1985), 63–92]. Google Scholar

  • [5] Busch, P.: Unsharp reality and joint measurements for spin observables, Phys. Rev. D (3) 33 (1986), 2253–2261. http://dx.doi.org/10.1103/PhysRevD.33.2253CrossrefGoogle Scholar

  • [6] Busch, P.: Some realizable joint measurements of complementary observables, Found. Phys. 27 (1987), 905–937. http://dx.doi.org/10.1007/BF00734320CrossrefGoogle Scholar

  • [7] Busch, P.: On the sharpness and bias of quantum effects, Found. Phys. 39 (2009), 712–730. arXiv:0706.3532v2. http://dx.doi.org/10.1007/s10701-009-9287-8CrossrefWeb of ScienceGoogle Scholar

  • [8] Busch, P.— Grabowski, M.— Lahti, P. J.: Operational Quantum Physics. Lect. Notes Phys. Monogr., Springer, Berlin, 1995. Google Scholar

  • [9] Busch, P.— Heinonen, T.— Lahti, P.: Heisenberg’s uncertainty principle, Phys. Rep. 452 (2007), 155–176. http://dx.doi.org/10.1016/j.physrep.2007.05.006CrossrefGoogle Scholar

  • [10] Busch, P.— Kiukas, J.— Lahti, P.: Measuring position and momentum together, Phys. Lett. A 372 (2008), 4379–4380. http://dx.doi.org/10.1016/j.physleta.2008.04.019CrossrefWeb of ScienceGoogle Scholar

  • [11] Busch, P.— Schmidt, H. J.: Coexistence of qubit effects, Quantum Inf. Process 9 (2010), 143–169. arXiv:0802.4167. http://dx.doi.org/10.1007/s11128-009-0109-xCrossrefWeb of ScienceGoogle Scholar

  • [12] Carmeli, C.— Heinonen, T.— Toigo, A.: Position and momentum observables on ℝ and ℝ3, J. Math. Phys. 45 (2004), 2526–2539. http://dx.doi.org/10.1063/1.1739296CrossrefGoogle Scholar

  • [13] Dvurečenskij, A.— Lahti, P.— Pulmannová, S.— Ylinen, K.: Notes on coarse grainings and functions of observables, Rep. Math. Phys. 55 (2005), 241–248. http://dx.doi.org/10.1016/S0034-4877(05)80030-8CrossrefGoogle Scholar

  • [14] Heinonen, T. — LAHTI, P. — PELLONPÄÄ, J. P. — PULMANNOVÁ, S. — YLINEN, K.: The norm-1 property of a quantum observable, J. Math. Phys. 44 (2003), 1998–2008. http://dx.doi.org/10.1063/1.1566454CrossrefGoogle Scholar

  • [15] Heinosaari, T.— Reitzner, D.— Stano, P.: Notes on joint measurability of quantum observables, Found. Phys. 38 (2008), 1133–1147. http://dx.doi.org/10.1007/s10701-008-9256-7CrossrefWeb of ScienceGoogle Scholar

  • [16] Kiukas, J.— Lahti, P.: A note on the measurement of phase space observables with an eight-port homodyne detector, J. Modern Opt. 55 (2008), 1891–1898. http://dx.doi.org/10.1080/09500340701864718Web of ScienceCrossrefGoogle Scholar

  • [17] Kiukas, J.— Lahti, P.— Pellonpää, J. P.: A proof for the informational completeness for the rotated quadrature observables, J. Phys. A.Math. Theor. 41 (2008), 175206. http://dx.doi.org/10.1088/1751-8113/41/17/175206CrossrefGoogle Scholar

  • [18] Kiukas, J.— Lahti, P.— Schultz, J.: Position and momentum tomography, Phys. Rev. A (3) 79 (2009), 052119. http://dx.doi.org/10.1103/PhysRevA.79.052119CrossrefWeb of ScienceGoogle Scholar

  • [19] Kiukas, J.— Lahti, P.— Ylinen, K.: Semispectral measures as convolutions and their moment operators, J. Math. Phys. 49 (2008), 112103/6. http://dx.doi.org/10.1063/1.3032330CrossrefWeb of ScienceGoogle Scholar

  • [20] Kiukas, J.— Werner, R.: Private communication, 2008. Google Scholar

  • [21] Lahti, P.— Pulmannová, S.: Coexistent observables and effects in quantum mechanics, Rep. Math. Phys. 39 (1997), 339–351. http://dx.doi.org/10.1016/S0034-4877(97)89752-2CrossrefGoogle Scholar

  • [22] Lahti, P.— Pulmannová, S.: Coexistent vs. functional coexistence of quantum observables, Rep. Math. Phys. 47 (2001), 199–212. http://dx.doi.org/10.1016/S0034-4877(01)89037-6CrossrefGoogle Scholar

  • [23] Lahti, P.— Pulmannová, S.— Ylinen, K.: Coexistent observables and effects in convexity approach, J. Math. Phys. 39 (1998), 6364–6371. http://dx.doi.org/10.1063/1.532643CrossrefGoogle Scholar

  • [24] Lahti, P.— Ylinen, K.: Dilations of positive operator measures and bimeasures related to quantum mechanics, Math. Slovaca 54 (2004), 169–189. Google Scholar

  • [25] Leonhardt, U.— Paul, H.— D’Ariano, G. M.: Tomographic reconstruction of the density matrix via pattern functions, Phys. Rev. A (3) 52 (1995), 4899–4898. http://dx.doi.org/10.1103/PhysRevA.52.4899CrossrefGoogle Scholar

  • [26] Ludwig, G.: Foundations of Quantum Mechanics I, Springer, Berlin, 1983. Google Scholar

  • [27] Martens, H.— De Muynck, W. M.: Nonideal quantum measurements, Found. Phys. 20 (1990), 255–281. Google Scholar

  • [28] Miyadera, T.— Imai, H.: Heisenberg’s uncertainty principle for simultaneous measurement of positive-operator-valued measures, Phys. Rev. A (3) 78 (2008), 052119. http://dx.doi.org/10.1103/PhysRevA.78.052119Web of ScienceCrossrefGoogle Scholar

  • [29] Moreland, T.— Gudder, S.: Infima of Hilbert space effects, Linear Algebra Appl. 286 (1999), 1–17. http://dx.doi.org/10.1016/S0024-3795(98)10119-2CrossrefGoogle Scholar

  • [30] Pták, P.— Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer Acad. Publ., Dordrecht, 1991. Google Scholar

  • [31] Raymer, M. G.: Uncertainty principle for joint measurement of noncommuting variables, Amer. J. Phys. 62 (1994), 986–993. http://dx.doi.org/10.1119/1.17657CrossrefGoogle Scholar

  • [32] Sikorski, R.: Boolean Algebras, Springer, Berlin, 1964. Google Scholar

  • [33] Simon, B.: The classical moment problem as a self-adjoint finite difference operator, Adv. Math. 137 (1998), 82–203. http://dx.doi.org/10.1006/aima.1998.1728CrossrefGoogle Scholar

  • [34] Stano, P.— Reitzner, D.— Heinosaari, T.: Coexistence of qubit effects, Phys. Rev. A (3) 78 (2008), 012315. http://dx.doi.org/10.1103/PhysRevA.78.012315Web of ScienceCrossrefGoogle Scholar

  • [35] Törmä, P.— Stenholm, S.— Jex, I.: Measurement and preparation using two probe modes, Phys. Rev. A (3) 52 (1995), 4812–4822. http://dx.doi.org/10.1103/PhysRevA.52.4812CrossrefGoogle Scholar

  • [36] Varadarajan, V. S.: Geometry of Quantum Theory, Springer, Berlin, 1985 (First edition by van Nostrand, Princeton, 1968, 1970). Google Scholar

  • [37] Von Weizsäcker, C. F.: Quantum theory and space-time. In: Symposium on the Foundations of Modern Physics (P. Lahti, P. Mittelstaed, eds.), World Scientific Publishing Co., Singapore, 1985, pp. 223–237. Google Scholar

  • [38] Werner, R.: The uncertainty relation for joint measurement of position and momentum, Quantum Inf. Comput. 4 (2004), 546–562. Google Scholar

  • [39] Yu, S.— Liu, N. L.— Li, L.— Oh, C. H.: Joint measurement of two unsharp observables of a qubit. arXiv:0805.1538 (2008). Web of ScienceGoogle Scholar

About the article

Published Online: 2010-10-08

Published in Print: 2010-10-01

Citation Information: Mathematica Slovaca, Volume 60, Issue 5, Pages 665–680, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.2478/s12175-010-0039-1.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Federico Holik, Gustavo Bosyk, and Guido Bellomo
Entropy, 2015, Volume 17, Number 11, Page 7349
Juha-Pekka Pellonpää
Journal of Physics A: Mathematical and Theoretical, 2014, Volume 47, Number 5, Page 052002
David Reeb, Daniel Reitzner, and Michael M Wolf
Journal of Physics A: Mathematical and Theoretical, 2013, Volume 46, Number 46, Page 462002
F. Holik and A. Plastino
Journal of Mathematical Physics, 2012, Volume 53, Number 7, Page 073301

Comments (0)

Please log in or register to comment.
Log in