[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (9th ed.) (M. Abramowitz, I. A. Stegun, eds). Applied Mathematics Series Vol. 55, National Bureau of Standards, Washington, DC, 1972. Google Scholar

[2] Alzer, H.: Sharp inequalities for the digamma and polygamma functions, Forum Math. 16 (2004), 181–221; http://dx.doi.org/10.1515/form.2004.009. http://dx.doi.org/10.1515/form.2004.009CrossrefGoogle Scholar

[3] Guo, B.-N.— Qi, F.: A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications, J. Korean Math. Soc. 48 (2011), 655–667; http://dx.doi.org/10.4134/JKMS.2011.48.3.655. http://dx.doi.org/10.4134/JKMS.2011.48.3.655CrossrefWeb of ScienceGoogle Scholar

[4] Guo, B.-N.— Qi, F.: A completely monotonic function involving the tri-gamma function and with degree one, Appl. Math. Comput. 218 (2012), 9890–9897; http://dx.doi.org/10.1016/j.amc.2012.03.075. http://dx.doi.org/10.1016/j.amc.2012.03.075Web of ScienceCrossrefGoogle Scholar

[5] Guo, B.-N.— Qi, F.— Srivastava, H. M.: Some uniqueness results for the nontrivially complete monotonicity of a class of functions involving the polygamma and related functions, Integral Transforms Spec. Funct. 21 (2010), 849–858; http://dx.doi.org/10.1080/10652461003748112. http://dx.doi.org/10.1080/10652461003748112CrossrefWeb of ScienceGoogle Scholar

[6] Mitrinović, D. S.— Pečarić, J. E.— Fink, A. M.: Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993 http://dx.doi.org/10.1007/978-94-017-1043-5CrossrefGoogle Scholar

[7] Qi, F.: Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058, 84 pages; http://dx.doi.org/10.1155/2010/493058. CrossrefGoogle Scholar

[8] Qi, F.: Completely monotonic degree of a function involving the tri- and tetra-gamma functions, http://arxiv.org/abs/1301.0154. Google Scholar

[9] Qi, F.: Complete monotonicity of a family of functions involving the tri- and tetra-gamma functions, http://arxiv.org/abs/1301.0156. Google Scholar

[10] Qi, F.: Some completely monotonic functions involving the q-tri- and -tetra-gamma functions and applications, http://arxiv.org/abs/1301.0155. Google Scholar

[11] Qi, F.— Cerone, P.— Dragomir, S. S.: Complete monotonicity of a function involving the divided difference of psi functions, Bull. Austral. Math. Soc. (2013) (To appear) http://dx.doi.org/10.1017/S0004972712001025. CrossrefGoogle Scholar

[12] Qi, F.— Guo, B.-N.: A completely monotonic function involving the tri- and tetragamma functions, http://arxiv.org/abs/1001.4611. Web of ScienceGoogle Scholar

[13] Qi, F.— Guo, B.-N.: Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications, Commun. Pure Appl. Anal. 8 (2009), 1975–1989; http://dx.doi.org/10.3934/cpaa.2009.8.1975. http://dx.doi.org/10.3934/cpaa.2009.8.1975CrossrefWeb of ScienceGoogle Scholar

[14] Qi, F.— Guo, B.-N.: Necessary and sufficient conditions for a function involving divided differences of the di- and tri-gamma functions to be completely monotonic, http://arxiv.org/abs/0903.3071. Google Scholar

[15] Qi, F.— Guo, B.-N.: Necessary and sufficient conditions for functions involving the triand tetra-gamma functions to be completely monotonic, Adv. in Appl. Math. 44 (2010), 71–83; http://dx.doi.org/10.1016/j.aam.2009.03.003. http://dx.doi.org/10.1016/j.aam.2009.03.003CrossrefGoogle Scholar

[16] Qi, F.— Luo, Q.-M.: Bounds for the ratio of two gamma functions — From Wendel’s and related inequalities to logarithmically completely monotonic functions, Banach J. Math. Anal. 6 (2012), 132–158. Web of ScienceGoogle Scholar

[17] Qi, F.— Luo, Q.-M.— Guo, B.-N.: Complete monotonicity of a function involving the divided difference of digamma functions, Sci. China Math. (2013) (To appear); http://dx.doi.org/10.1007/s11425-012-4562-0. CrossrefGoogle Scholar

[18] Widder, D. V.: The Laplace Transform, Princeton University Press, Princeton, 1946. Google Scholar

[19] Zhao, J.-L.— Guo, B.-N.— Qi, F.: Complete monotonicity of two functions involving the tri- and tetra-gamma functions, Period. Math. Hungar. 65 (2012), no. 1, 147–155; http://dx.doi.org/10.1007/s10998-012-9562-x. http://dx.doi.org/10.1007/s10998-012-9562-xGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.