Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2018: 0.29

See all formats and pricing
More options …
Volume 63, Issue 6


Prime, irreducible elements and coatoms in posets

Weifeng Zhou
  • College of Mathematics and Econometrics, Hunan University, Hunan Changsha, China
  • School of Sciences, Nanchang Institute of Technology, Jiangxi Nanchang, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qingguo Li / Lankun Guo
Published Online: 2013-12-29 | DOI: https://doi.org/10.2478/s12175-013-0163-9


In this paper, some properties of prime elements, pseudoprime elements, irreducible elements and coatoms in posets are investigated. We show that the four kinds of elements are equivalent to each other in finite Boolean posets. Furthermore, we demonstrate that every element of a finite Boolean poset can be represented by one kind of them. The example presented in this paper indicates that this result may not hold in every finite poset, but all the irreducible elements are proved to be contained in each order generating set. Finally, the multiplicative auxiliary relation on posets and the notion of arithmetic poset are introduced, and some properties about them are generalized to posets.

MSC: Primary 06A06; Secondary 06A11, 06C15

Keywords: Boolean poset; prime element; irreducible element; atom

  • [1] BIRKHOFF, G.: Lattice Theory, American Mathematical Society, Providence, RI, 1984. Google Scholar

  • [2] CHAJDA, I.: Complemented ordered sets, Arch. Math. (Brno) 28 (1992), 25–34. Google Scholar

  • [3] CHAJDA, I.— RACHŮNEK, J.: Forbidden configurations for distributive and modular ordered sets, Order 5 (1989) 407–423. http://dx.doi.org/10.1007/BF00353659CrossrefGoogle Scholar

  • [4] DAVEY, B. A.— PRIESTLEY, H. A.: Introduction to Lattices and Order (2nd ed.), Cambridge University Press, Cambridge, 2002. http://dx.doi.org/10.1017/CBO9780511809088CrossrefGoogle Scholar

  • [5] DAVID, E.: Ideals of quasi-ordered sets, Algebra Universalis 47 (2002), 95–102. http://dx.doi.org/10.1007/s00012-002-8177-0CrossrefGoogle Scholar

  • [6] ERNÉ, M.— ŠEŠELJA, B.— TEPAVČEVIĆ, A.: Posets generated by irreducible elements, Order 20 (2003), 79–89. http://dx.doi.org/10.1023/A:1024438130716CrossrefGoogle Scholar

  • [7] ERNÉ, M.: Prime and maximal ideal of partially ordered sets, Math. Slovaca 56 (2006), 1–22. Google Scholar

  • [8] FRINK, O.: Ideals in partially ordered sets, Amer. Math. Monthly 61 (1954), 223–234. http://dx.doi.org/10.2307/2306387CrossrefGoogle Scholar

  • [9] GIERZ, G.— HOFMANN, K. H.— KEIMEL, K.— LAWSON, J. D.— MISLOVE, M.— SCOTT, D. S.: Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003. http://dx.doi.org/10.1017/CBO9780511542725CrossrefGoogle Scholar

  • [10] GIERZ, G.— KEIMEL, K.: A lemma on primes appearing in algebra and analysis, Houston J. Math. 3 (1977), 207–224. Google Scholar

  • [11] HALAS, R.: Psedocomplemented ordered sets, Arch. Math. (Brno) 29 (1993), 153–160. Google Scholar

  • [12] HALAS, R.: Some properties of Boolean posets, Czechoslovak Math. J. 46 (1996), 93–98. Google Scholar

  • [13] HOFMANN, K. H.— LAWSON, J. D.: Irreducibility and Generation in continuous lattices, Semigroup Forum 13 (1977), 307–353. http://dx.doi.org/10.1007/BF02194952CrossrefGoogle Scholar

  • [14] JIANG, G. H.— SHI, Q. X.: Characterizations of distributive lattices and semicontinuous lattices, Bull. Korean Math. Soc. 47 (2010), 633–643. http://dx.doi.org/10.4134/BKMS.2010.47.3.633Web of ScienceCrossrefGoogle Scholar

  • [15] LARMEROVÁ, J.— RACHŮNEK, J.: Translations of distributive and modular ordered sets, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 91 (1988), 13–23. Google Scholar

  • [16] LARMEROVÁ, J.: A characterization of o-distributive semilattices, Acta Sci. Math. (Szeged) 54 (1990), 241–246. Google Scholar

  • [17] LI, Q.— LI, J.: Meet continuity of posets via Lim-inf-convergence, Adv. Math. (China) 39 (2010), 755–760. Google Scholar

  • [18] NIEDERLE, J.: Boolean and distributive ordered sets: Characterization and representation by sets, Order 12 (1995), 189–210. http://dx.doi.org/10.1007/BF01108627CrossrefGoogle Scholar

  • [19] RACHŮNEK, J.: On o-modular and o-distributive semilattices, Math. Slovaca 42 (1992), 3–13. Google Scholar

  • [20] ŠEŠELJA, B.— TEPAVČEVIĆ, A.: On generation of finite posets by meet-irreducibles, Discrete Math. 186 (1998), 269–275. http://dx.doi.org/10.1016/S0012-365X(97)00196-9CrossrefGoogle Scholar

  • [21] WAPHARE, B. N.— JOSHI, V.: On uniquely complemented poset, Order 22 (2005), 11–20. http://dx.doi.org/10.1007/s11083-005-9002-0CrossrefGoogle Scholar

About the article

Published Online: 2013-12-29

Published in Print: 2013-12-01

Citation Information: Mathematica Slovaca, Volume 63, Issue 6, Pages 1163–1178, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.2478/s12175-013-0163-9.

Export Citation

© 2013 Mathematical Institute, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in