Jump to ContentJump to Main Navigation
Show Summary Details

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year

IMPACT FACTOR 2015: 0.366
5-year IMPACT FACTOR: 0.385

SCImago Journal Rank (SJR) 2014: 0.351
Source Normalized Impact per Paper (SNIP) 2014: 0.611
Impact per Publication (IPP) 2014: 0.434

Mathematical Citation Quotient (MCQ) 2015: 0.27

See all formats and pricing

Select Volume and Issue


Positive solutions for some competitive elliptic systems

Ramzi Alsaedi
  • Department of Mathematics, Rabigh College of Sciences and Arts, King Abdulaziz University, P.O. Box 344, Rabigh, 21911, Kingdom of Saudi Arabia
  • :
/ Habib Mâagli
  • Department of Mathematics, Rabigh College of Sciences and Arts, King Abdulaziz University, P.O. Box 344, Rabigh, 21911, Kingdom of Saudi Arabia
  • :
/ Noureddine Zeddini
  • Department of Mathematics, Rabigh College of Sciences and Arts, King Abdulaziz University, P.O. Box 344, Rabigh, 21911, Kingdom of Saudi Arabia
  • :
Published Online: 2014-03-06 | DOI: https://doi.org/10.2478/s12175-013-0187-1


Using some potential theory tools and the Schauder fixed point theorem, we prove the existence of positive bounded continuous solutions with a precise global behavior for the semilinear elliptic system Δu = p(x)u α ν r in domains D of ℝn, n ≥ 3, with compact boundary (bounded or unbounded) subject to some Dirichlet conditions, where α ≥ 1, β ≥ 1, r ≥ 0, s ≥ 0 and the potentials p, q are nonnegative and belong to the Kato class K(D).

MSC: Primary 31B35, 35B09, 35B50, 35J08, 35J57

Keywords: positive solutions; Green function; Kato class; elliptic systems; Maximum principle

  • [1] AKHMEDIEV, R.— ANKIEWICZ, A.: Partially coherent solitons on a finite background, Phys. Rev. Lett. 82 (1999), 2661–2664. http://dx.doi.org/10.1103/PhysRevLett.82.2661 [Crossref]

  • [2] ARMITAGE, D. H.— GARDINER, S. J.: Classical Potential Theory, Springer-Verlag, London, 2001. http://dx.doi.org/10.1007/978-1-4471-0233-5 [Crossref]

  • [3] ASTARITA, G.— MARRUCCI, G.: Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London-New York, 1974.

  • [4] ATKINSON, C.— El-ALI, K.: Some boundary value problems for the Bingham model, J. Non-Newtonian Fluid Mech. 41 (1992), 339–363. http://dx.doi.org/10.1016/0377-0257(92)87006-W [Crossref]

  • [5] BACHAR, I.— MÂAGLI, H.— ZEDDINI, N.: Estimates on the Green function and existence of positive solutions of a singular nonlinear elliptic equations, Commun. Contemp. Math. 5 (2003), 401–434. http://dx.doi.org/10.1142/S0219199703001038 [Crossref]

  • [6] CHUNG, K. L.— ZHAO, Z.: From Brownian Motion to Schrödinger’s Equation, Springer Verlag, Berlin, 1995. http://dx.doi.org/10.1007/978-3-642-57856-4 [Crossref]

  • [7] ESTEBAN, J. R.— VAZQUEZ, J. L.: On the equation of turbulent filteration in onedimensional porous media, Nonlinear Anal. 10 (1982), 1303–1325. http://dx.doi.org/10.1016/0362-546X(86)90068-4 [Crossref]

  • [8] KALASHNIKOV, A. S.: A nonlinear equation arising in the theory of nonlinear filtration, Tr. Semin. im. I. G. Petrovskogo 4 (1978), 137–146.

  • [9] MARTINSON, L. K.— PAVLOV, K. B.: Unsteady shear flows of a conducting fluid with a rheological power law, Magnit. Gidrodinamika 2 (1971), 50–58

  • [10] MU, CHUNLAI— HUANG, SHUIBO— TIAN, QIAOYU— LIU, LIMIN: Large solutions for an elliptic system of competetive type: Existence, uniqueness and asymptotic behavior, Nonlinear Anal. 71 (2009), 4544–4552. http://dx.doi.org/10.1016/j.na.2009.03.012 [Crossref]

  • [11] CÎRSTEA, F.— RADULESCU, V.: Entire solutions blowing up at infinity for semilinear elliptic systems, J. Math. Pures Appl. (9) 81 (2002), 827–846. http://dx.doi.org/10.1016/S0021-7824(02)01265-5 [Crossref]

  • [12] DAUTRY, R.— LIONS, J. L.: Analyse mathématique et calcul numérique pour les sciences et les techniques. Lóperateur de Laplace. Coll. C.E.A, Vol.2, Masson, Paris, 1987.

  • [13] GARÍA-MELÍAN, J.: A remark on uniqueness of large solutions for elliptic systems of competetive type, J. Math. Anal. Appl. 331 (2007), 608–616. http://dx.doi.org/10.1016/j.jmaa.2006.09.006 [Crossref]

  • [14] GHANMI, A.— MÂGLI, H.— TURKI, S.— ZEDDINI, N.: Existence of positive bounded solutions for some nonlinear elliptic systems, J. Math. Anal. Appl. 352 (2009), 440–448. http://dx.doi.org/10.1016/j.jmaa.2008.04.029 [Crossref]

  • [15] GHERGU, M.— RADULESCU, V.: Explosive solutions of semilinear elliptic systems with gradient term, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97 (2003), 437–445.

  • [16] GHERGU, M.— RADULESCU, V.: Singular Elliptic Problems. Bifurcation and Asymptotic Analysis. Oxford Lecture Ser. Math. Appl. 37, Oxford University Press, New York, 2008.

  • [17] GHERGU, M.: Lane-Emden systems with negative exponents, J. Funct. Anal. 258 (2010), 3295–3318. http://dx.doi.org/10.1016/j.jfa.2010.02.003 [Crossref]

  • [18] KRISTÀLY, A.— RADULESCU, V.— VARGA, C.: Variatinal Principles in Mathematical Physics, Geometry and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems. Encyclopedia Math. Appl. 136, Cambrige University Press, Cambrige, 2010. http://dx.doi.org/10.1017/CBO9780511760631 [Crossref]

  • [19] LAIR, A. V.: A necessary and sufficient condition for the existence of large solutions to sublinear elliptic systems, J. Math. Anal. Appl. 365 (2010), 103–108. http://dx.doi.org/10.1016/j.jmaa.2009.10.026 [Crossref]

  • [20] LAIR, A. V.— WOOD, A. W.: Existence of entire large solutions of semilinear elliptic systems, J. Differential Equations 164 (2000), 380–394. http://dx.doi.org/10.1006/jdeq.2000.3768 [Crossref]

  • [21] MÂAGLI, H.: Perturbation Semi-linéaire des Résolvantes et des Semi-groupes, Potential Anal. 3 (1994), 61–87. http://dx.doi.org/10.1007/BF01047836 [Crossref]

  • [22] MÂAGLI, H.— ZRIBI, M.: On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains, Positivity 9 (2005), 667–686. http://dx.doi.org/10.1007/s11117-005-2782-z [Crossref]

  • [23] MENYUK, C. R.: Pulse propagation in an elliptically birefringent kerr medium, IEEE J. Quantum Electron. 25 (1989), 2674–2682. http://dx.doi.org/10.1109/3.40656 [Crossref]

  • [24] PORT, S. C.— STONE, C. J.: Brownian Motion and Classical Potential Theory, Academic Press, New York-San Francisco-London, 1978.

  • [25] WIDDER, D. V.: The Laplace Transform, Princeton Univ. Press, Princeton, NJ, 1941.

  • [26] ZHANG, Z.: Existence of entire positive solutions for a class of semilinear elliptic systems, Electron. J. Differential Equations 2010 (2010), No. 16, 1–5. http://dx.doi.org/10.1155/2010/308357 [Crossref]

Published Online: 2014-03-06

Published in Print: 2014-02-01

Citation Information: Mathematica Slovaca. Volume 64, Issue 1, Pages 61–72, ISSN (Online) 1337-2211, DOI: https://doi.org/10.2478/s12175-013-0187-1, March 2014

© 2014 Mathematical Institute, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.