Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia


IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2018: 0.29

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 64, Issue 3

Issues

A note on the convexity of lattices generated by the set of nonnegative integers

Jozef Pócs
  • Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, SK-040 01, Košice, Slovakia
  • Department of Algebra and Geometry, Palacký University Olomouc, 17. listopadu 12, CZ-771 46, Olomouc, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-05 | DOI: https://doi.org/10.2478/s12175-014-0225-7

Abstract

A class of lattices is said to be a convexity if it is closed under homomorphic images, convex sublattices and direct products. The main aim of this paper is to show that convexity generated by nonnegative integers contains all ordinal numbers. Consequently, any two infinite ordinals generate the same convexity.

MSC: Primary 06B99

Keywords: lattice; convexity; ultraproduct

  • [1] BELL, J. L.— SLOMSON, A. B.: Models and Ultraproducts: An Introduction. Dover Publications, Mineola, NY, 2006. Google Scholar

  • [2] CZÉDLI, G.: Some varieties and convexities generated by fractal lattices, Algebra Universalis 60 (2009), 107–124. http://dx.doi.org/10.1007/s00012-008-2096-7Web of ScienceCrossrefGoogle Scholar

  • [3] JAKUBÍK, J.: On convexities of lattices, Czechoslovak Math. J. 42 (1992), 325–330. Google Scholar

  • [4] JAKUBÍK, J.: On convexities of d-groups, Czechoslovak Math. J. 44 (1994), 305–314. Google Scholar

  • [5] JAKUBÍK, J.: Convexities of lattice ordered groups, Math. Bohem. 121 (1996), 59–67. Google Scholar

  • [6] JAKUBÍK, J.: Convexities of normal valued lattice ordered groups, Czechoslovak Math. J. 50 (2000), 641–649. http://dx.doi.org/10.1023/A:1022850030473CrossrefGoogle Scholar

  • [7] JAKUBÍK, J.: Torsion classes of abelian cyclically ordered groups, Math. Slovaca 62 (2012), 633–646. http://dx.doi.org/10.2478/s12175-012-0036-7CrossrefWeb of ScienceGoogle Scholar

  • [8] JAKUBÍK, J.: Torsion classes of generalized Boolean algebras, Math. Slovaca 62 (2012), 399–416. http://dx.doi.org/10.2478/s12175-012-0017-xWeb of ScienceCrossrefGoogle Scholar

  • [9] JAKUBÍK, J.— LIHOVÁ, J.: Generalized Specker lattice-ordered groups and two types of distributivity, Math. Slovaca 63 (2013), 5–12. http://dx.doi.org/10.2478/s12175-012-0077-yWeb of ScienceCrossrefGoogle Scholar

  • [10] JAKUBÍKOVÁ-STUDENOVSKÁ, D.: Convexities of partial monounary algebras, Algebra Universalis 60 (2009), 125–143. http://dx.doi.org/10.1007/s00012-009-2087-3CrossrefWeb of ScienceGoogle Scholar

  • [11] JECH, T.: Set Theory (3rd Millennium ed), Springer, Berlin, 2002. Google Scholar

  • [12] LIHOVÁ, J.: Convexities of Riesz groups, Tatra Mt. Math. Publ. 30 (2005), 71–85. Google Scholar

  • [13] LIHOVÁ, J.: On convexities of lattices, Publ. Math. Debrecen 72 (2008), 35–43. Google Scholar

  • [14] MARKER, D.: Model Theory: An Introduction, Springer, New York, 2002. Google Scholar

  • [15] General Algebra (R. Mlitz, ed.). Proc. Internat. Conf. Krems, 1988, North Holland, Amsterdam-New York-Tokyo-Oxford, 1990. Google Scholar

  • [16] SHELAH, S.: Every two elementarily equivalent models have isomorphic ultrapowers, Israel J. Math. 10 (1972), 224–233. http://dx.doi.org/10.1007/BF02771574CrossrefGoogle Scholar

About the article

Published Online: 2014-07-05

Published in Print: 2014-06-01


Citation Information: Mathematica Slovaca, Volume 64, Issue 3, Pages 555–562, ISSN (Online) 1337-2211, DOI: https://doi.org/10.2478/s12175-014-0225-7.

Export Citation

© 2014 Mathematical Institute, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Miroslava Černegová and Danica Jakubíková-Studenovská
Algebra universalis, 2018, Volume 79, Number 1

Comments (0)

Please log in or register to comment.
Log in