Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2018: 0.29

See all formats and pricing
More options …
Volume 64, Issue 3


The Euler characteristic and valuations on MV-algebras

Daniele Mundici
  • Department of Mathematics and Computer Science “Ulisse Dini”, University of Florence, viale Morgagni 67/A, 50134, Florence, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Pedrini
Published Online: 2014-07-05 | DOI: https://doi.org/10.2478/s12175-014-0226-6


Every finitely presented MV-algebra A has a unique idempotent valuation E assigning value 1 to every basic element of A. For each a ∈ A, E(a) turns out to coincide with the Euler characteristic of the open set of maximal ideals m of A such that a/m is nonzero.

MSC: Primary 06D35; Secondary 57Q05, 52B05, 55U10.

Keywords: Euler characteristic; valuation; MV-algebra; basis; rational polyhedron; finite presentation; duality; inclusion-exclusion; additivity; Morse theory; Turing computable valuation

  • [1] AGRACHEV, A. A.— PALLASCHE, D.— SCHOLTE, S.: On Morse theory for piecewise smooth functions, J. Dyn. Control Syst. 3 (1997), 449–469. Google Scholar

  • [2] CABRER, L.— MUNDICI, D.: Finitely presented lattice-ordered abelian groups with orderunit, J. Algebra 343 (2011), 1–10. http://dx.doi.org/10.1016/j.jalgebra.2011.07.007Web of ScienceCrossrefGoogle Scholar

  • [3] CIGNOLI, R. L. O.— D’OTTAVIANO, I. M. L.— MUNDICI, D.: Algebraic Foundations of many-valued Reasoning. Trends in Logic, Vol. 7, Kluwer/Springer, Dordrecht/Berlin, 2000. Google Scholar

  • [4] FORMAN, R.: Morse theory for cell complexes, Adv. Math. 134 (1998), 90–145. http://dx.doi.org/10.1006/aima.1997.1650CrossrefGoogle Scholar

  • [5] MARRA, V.— SPADA, L.: The dual adjunction between MV-algebras and Tychonoff spaces, Studia Logica 100 (2012), 253–278 (Special issue in memoriam Leo Esakia). http://dx.doi.org/10.1007/s11225-012-9377-zCrossrefWeb of ScienceGoogle Scholar

  • [6] MAUNDER, C. R. F.: Algebraic Topology, Cambridge University Press, Cambridge, 1980. Google Scholar

  • [7] MILNOR, J.: Morse theory, Princeton University Press, Princeton, NJ, 1963. Google Scholar

  • [8] MUNDICI, D.: Advanced Łukasiewicz Calculus and MV-algebras. Trends in Logic, Vol. 35, Springer, Berlin, 2011. http://dx.doi.org/10.1007/978-94-007-0840-2CrossrefGoogle Scholar

  • [9] PEDRINI, A.: The Euler characteristic of a polyhedron as a valuation on its coordinate vector lattice. Electronic version: arXiv:1209.3248v1 Google Scholar

About the article

Published Online: 2014-07-05

Published in Print: 2014-06-01

Citation Information: Mathematica Slovaca, Volume 64, Issue 3, Pages 563–570, ISSN (Online) 1337-2211, DOI: https://doi.org/10.2478/s12175-014-0226-6.

Export Citation

© 2014 Mathematical Institute, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in