Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia


IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2017: 0.26

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 64, Issue 4

Issues

Periodic solutions of non-autonomous second order systems with (q(t), p(t))-Laplacian

Daniel Paşca / Chun-Lei Tang
Published Online: 2014-09-07 | DOI: https://doi.org/10.2478/s12175-014-0248-0

Abstract

Using the least action principle in critical point theory we obtain some existence results of periodic solutions for (q(t), p(t))-Laplacian systems which generalize some existence results.

MSC: Primary 34C25

Keywords: periodic solutions; (q(t),p(t))-Laplacian systems; generalized Lebesgue and Sobolev spaces

  • [1] CLARKE, F. H.: Optimization and Nonsmooth Analysis. Classics Appl. Math. 5, SIAM, Philadelphia, PA, 1990. http://dx.doi.org/10.1137/1.9781611971309Google Scholar

  • [2] JEBELEAN, P.— PRECUP, R.: Solvability of p, q-Laplacian systems with potential boundary conditions, Appl. Anal. 89 (2010), 221–228. http://dx.doi.org/10.1080/00036810902889567CrossrefGoogle Scholar

  • [3] MAWHIN, J.— WILLEM, M.: Critical Point Theory and Hamiltonian Systems, Springer-Verlag, Berlin-New York, 1989. http://dx.doi.org/10.1007/978-1-4757-2061-7Google Scholar

  • [4] PASŞCA, D.: Periodic solutions for second order differential inclusions, Comm. Appl. Nonlinear Anal. 6 (1999), 91–98. Google Scholar

  • [5] PASŞCA, D.: Periodic solutions for second order differential inclusions with sublinear nonlinearity, Panamer. Math. J. 10 (2000), 35–45. Google Scholar

  • [6] PASŞCA, D.: Periodic solutions of a class of non-autonomous second order differential inclusions systems, Abstr. Appl. Anal. 6 (2001), 151–161. http://dx.doi.org/10.1155/S1085337501000525CrossrefGoogle Scholar

  • [7] PASŞCA, D.: Periodic solutions of second-order differential inclusions systems with p-Laplacian, J. Math. Anal. Appl. 325 (2007), 90–100. http://dx.doi.org/10.1016/j.jmaa.2006.01.061CrossrefGoogle Scholar

  • [8] PASŞCA, D.— TANG, CH.-L.: Subharmonic solutions for nonautonomous sublinear second order differential inclusions systems with p-Laplacian, Nonlinear Anal. 69 (2008), 1083–1090. http://dx.doi.org/10.1016/j.na.2007.06.019Web of ScienceCrossrefGoogle Scholar

  • [9] PASŞCA, D.: Periodic solutions for nonautonomous second order differential inclusions systems with p-Laplacian, Comm. Appl. Nonlinear Anal. 16 (2009), 13–23. Google Scholar

  • [10] PASŞCA, D.— TANG, CH.-L.: Some existence results on periodic solutions of nonautonomous second order differential systems with (q, p)-Laplacian, Appl. Math. Lett. 23 (2010), 246–251. http://dx.doi.org/10.1016/j.aml.2009.10.005CrossrefGoogle Scholar

  • [11] PASŞCA, D.: Periodic solutions of a class of nonautonomous second order differential systems with (q, p)-Laplacian, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 841–850. Google Scholar

  • [12] PASŞCA, D.— TANG, CH.-L.: Some existence results on periodic solutions of ordinary (q, p)-Laplacian systems, J. Appl. Math. Inform. 29 (2011), 39–48. Google Scholar

  • [13] PASŞCA, D.: Periodic solutions of second-order differential inclusions systems with (q, p)-Laplacian, Anal. Appl. 9 (2011), 201–223. http://dx.doi.org/10.1142/S0219530511001819CrossrefGoogle Scholar

  • [14] TANG, CH.-L.: Periodic solutions of non-autonomous second-order systems with Γ-quasisubadditive potential, J. Math. Anal. Appl. 189 (1995), 671–675. http://dx.doi.org/10.1006/jmaa.1995.1044CrossrefGoogle Scholar

  • [15] TANG, CH.-L.: Periodic solutions of non-autonomous second order systems, J. Math. Anal. Appl. 202 (1996), 465–469. http://dx.doi.org/10.1006/jmaa.1996.0327CrossrefGoogle Scholar

  • [16] TANG, CH.-L.: Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (1998), 3263–3270. http://dx.doi.org/10.1090/S0002-9939-98-04706-6CrossrefGoogle Scholar

  • [17] TANG, CH.-L.: Existence and multiplicity of periodic solutions of nonautonomous second order systems, Nonlinear Anal. 32 (1998), 299–304. http://dx.doi.org/10.1016/S0362-546X(97)00493-8CrossrefGoogle Scholar

  • [18] WU, X.-P.: Periodic solutions for nonautonomous second-order systems with bounded nonlinearity, J. Math. Anal. Appl. 230 (1999), 135–141. http://dx.doi.org/10.1006/jmaa.1998.6181CrossrefGoogle Scholar

  • [19] WU, X.-P.— TANG, CH.-L.: Periodic solutions of a class of non-autonomous secondorder systems, J. Math. Anal. Appl. 236 (1999), 227–235. http://dx.doi.org/10.1006/jmaa.1999.6408CrossrefGoogle Scholar

  • [20] TANG, CH.-L.— WU, X.-P: Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2001), 386–397. http://dx.doi.org/10.1006/jmaa.2000.7401CrossrefGoogle Scholar

  • [21] MA, J.— TANG, CH.-L.: Periodic solutions for some nonautonomous second-order systems, J. Math. Anal. Appl. 275 (2002), 482–494. http://dx.doi.org/10.1016/S0022-247X(02)00636-4CrossrefGoogle Scholar

  • [22] WU, X.-P.— TANG, CH.-L.: Periodic solutions of nonautonomous second-order hamiltonian systems with even-typed potentials, Nonlinear Anal. 55 (2003), 759–769. http://dx.doi.org/10.1016/j.na.2003.08.009CrossrefGoogle Scholar

  • [23] TANG, CH.-L.— WU, X.-P.: Notes on periodic solutions of subquadratic second order systems, J. Math. Anal. Appl. 285 (2003), 8–16. http://dx.doi.org/10.1016/S0022-247X(02)00417-1CrossrefGoogle Scholar

  • [24] ZHAO, F.— WU, X.-P.: Saddle point reduction method for some non-autonomous second order systems, J. Math. Anal. Appl. 291 (2004), 653–665. http://dx.doi.org/10.1016/j.jmaa.2003.11.019CrossrefGoogle Scholar

  • [25] TANG, CH.-L.— WU, X.-P.: Subharmonic solutions for nonautonomous second order Hamiltonian systems, J. Math. Anal. Appl. 304 (2005), 383–393. http://dx.doi.org/10.1016/j.jmaa.2004.09.032CrossrefGoogle Scholar

  • [26] XU, B.— TANG, CH.-L.: Some existence results on periodic solutions of ordinary p-Laplacian systems, J. Math. Anal. Appl. 333 (2007), 1228–1236. http://dx.doi.org/10.1016/j.jmaa.2006.11.051CrossrefGoogle Scholar

  • [27] YU TIAN, Y.— GE, W.: Periodic solutions of non-autonomous second-order systems with a p-Laplacian, Nonlinear Anal. 66 (2007), 192–203. http://dx.doi.org/10.1016/j.na.2005.11.020CrossrefGoogle Scholar

  • [28] TANG, CH.-L.— WU, X.-P.: Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems, J. Differential Equations 248 (2010), 660–692. http://dx.doi.org/10.1016/j.jde.2009.11.007CrossrefWeb of ScienceGoogle Scholar

  • [29] FAN, X. L.— ZHAO, D.: On the space L p(x)(Ω) and W m,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), 424–446. http://dx.doi.org/10.1006/jmaa.2000.7617CrossrefGoogle Scholar

  • [30] FAN, X. L.— ZHANG, Q. H.: Existence of solutions for p (x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–1852. http://dx.doi.org/10.1016/S0362-546X(02)00150-5CrossrefGoogle Scholar

  • [31] FAN, X. L.— ZHAO, Y. Z.— ZHAO, D.: Compact embeddings theorems with symmetry of Strauss-Lions type for the space W m, p(x) (Ω), J. Math. Anal. Appl. 255 (2001), 333–348. http://dx.doi.org/10.1006/jmaa.2000.7266CrossrefGoogle Scholar

  • [32] FAN, X.-L.— FAN, X.: A Knobloch-type result for p(t)-Laplacian systems, J. Math. Anal. Appl. 282 (2003), 453–464. http://dx.doi.org/10.1016/S0022-247X(02)00376-1CrossrefGoogle Scholar

  • [33] WANG, X. J.— YUAN, R.: Existence of periodic solutions for p(t)-Laplacian systems, Nonlinear Anal. 70 (2009), 866–880. http://dx.doi.org/10.1016/j.na.2008.01.017CrossrefGoogle Scholar

  • [34] ZHANG, L.— YI CHEN, Y: Existence of periodic solutions of p(t)-Laplacian systems, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 25–38. Google Scholar

  • [35] YANG, X.— CHEN, H.: Existence of periodic solutions for sublinear second order dynamical system with (q, p)-Laplacian, Math. Slovaca 63 (2013), 799–816. http://dx.doi.org/10.2478/s12175-013-0136-zWeb of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2014-09-07

Published in Print: 2014-08-01


Citation Information: Mathematica Slovaca, Volume 64, Issue 4, Pages 913–930, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.2478/s12175-014-0248-0.

Export Citation

© 2014 Mathematical Institute, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in