[1] AGHALARI, R.— KULKARNI, S. R.: Certain properties of parabolic starlike and convex functions of order ρ, Bull. Malays. Math. Sci. Soc. (2) 26 (2003), 153–162. Google Scholar

[2] ALI, R. M.— SINGH, V.: Coefficient of parabolic starlike functions of order ρ. In: Comput. Methods Funct. Theory Ser. Approx. Decompos., 1994 (Penang), Vol. 5, World Scientific Publishing, Singapore, 1995, pp. 23–26. Google Scholar

[3] ANDREWS, G. E.— ASKEY, R.— ROY, R.: Special Functions, Cambridge Univ. Press, Cambridge, 1999. http://dx.doi.org/10.1017/CBO9781107325937CrossrefGoogle Scholar

[4] BHARTI, R.— PARVATHAM, R.— SWAMINATHAN, A.: On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997), 17–23. Google Scholar

[5] GOODMAN, A.W.: On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87–92. Google Scholar

[6] KANAS, S.: Coefficient estimates in subclasses of the Caratheodory class related to conical domains, Acta Math. Univ. Comenian. (N.S.) 74 (2005), 149–161. Google Scholar

[7] KANAS, S.— WIŚNIOWSKA, A.: Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327–336. http://dx.doi.org/10.1016/S0377-0427(99)00018-7CrossrefGoogle Scholar

[8] KANAS, S.— WIŚNIOWSKA, A.: Conic regions and k-uniform convexity, II, Folia Sci. Tech. Resov. 170 (1998), 65–78. Google Scholar

[9] KANAS, S.— WIŚNIOWSKA, A.: Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), 647–657. Google Scholar

[10] KANAS, S.— SRIVASTAVA, H. M.: Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct. 9 (2000), 121–132. http://dx.doi.org/10.1080/10652460008819249CrossrefGoogle Scholar

[11] KANAS, S.— SUGAWA, T.: Conformal representations of the interior of an ellipse, Ann. Acad. Sci. Fenn. Math. 31 (2006), 329–348. Google Scholar

[12] KEOGH, F. R.— MERKES, E. P.: A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12. http://dx.doi.org/10.1090/S0002-9939-1969-0232926-9CrossrefGoogle Scholar

[13] MA, W.— MINDA, D.: Uniformly convex functions, Ann. Polon. Math. 57 (1992), 165–175. Google Scholar

[14] MA, W.— MINDA, D.: Uniformly convex functions, II, Ann. Polon. Math. 58 (1993), 275–285. Google Scholar

[15] MA, W.— MINDA, D.: A unified treatment of some special classes of univalent functions. In: Proc. of the Conference on Complex Analysis (Tianjin), 1992 (Z. Li, F. Y. Ren, L. Yang, S. Y. Zhang, eds.), Conf. Proc. Lecture Notes Anal., Vol. 1, Int. Press, Massachusetts, 1994, 157–169. Google Scholar

[16] OWA, SH.: On uniformly convex functions, Math. Japon. 48 (1998), 377–384. Google Scholar

[17] ROGOSINSKI, W.: On the coefficients of subordinate functions, Proc. Lond. Math. Soc. (3) 48 (1943), 48–82. Google Scholar

[18] RØNNING, F.: On starlike functions associated with parabolic regions, Ann. Univ.Mariae Curie-Skłodowska Sect. A 45 (1991), 117–122. Google Scholar

[19] RØNNING, F.: Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189–196. http://dx.doi.org/10.1090/S0002-9939-1993-1128729-7CrossrefGoogle Scholar

[20] RUSCHEWEYH, ST.: New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109–115. http://dx.doi.org/10.1090/S0002-9939-1975-0367176-1CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.