[1] AHUJA, O. P.— AGHALARY, R.— JOSHI, S. B.: Harmonic univalent functions associated with k-uniformly starlike functions, Math. Sci. Res. J. 9 (2005), 9–17. Google Scholar

[2] AHUJA, O. P.: Planar harmonic convolution operators generated by hypergeometric functions, Integral Transforms Spec. Funct. 18 (2007), 165–177. http://dx.doi.org/10.1080/10652460701210227Web of ScienceCrossrefGoogle Scholar

[3] ALI, R. M.— STEPHEN, A.— SUBRAMANIAN, K. G.: Subclasses of harmonic mappings defined by convolution, Appl. Math. Lett. 23(10) (2010), 1243–1247. http://dx.doi.org/10.1016/j.aml.2010.06.006CrossrefWeb of ScienceGoogle Scholar

[4] AVCI, Y.— ZLOTKIEWICZ, E.: On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sklodowska Sect. A 44 (1990), 1–7. Google Scholar

[5] BERNARDZ, U.— KANAS, S.: Generalized neighbourhoods and stability of convolution for the class of k-uniformly convex and k-starlike functions, Folia. Sci. Tech. Rzeszów Math. 175 (1999), 29–38. Google Scholar

[6] BERNARDZ, U.— KANAS, S.: Stability of the integral convolution of k-uniformly convex and k-starlike functions, J. Appl. Anal. 10 (2004), 105–115. Google Scholar

[7] CARLSON, B. C.— SHAFFER, D. B.: Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737–745. http://dx.doi.org/10.1137/0515057CrossrefGoogle Scholar

[8] CHOI, J. H.— SAIGO, M.— SRIVASTAVA, H. M.: Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432–445. http://dx.doi.org/10.1016/S0022-247X(02)00500-0CrossrefGoogle Scholar

[9] CLUNIE, J.— SHEIL-SMALL, T.: Harmonic univalent functions, Ann. Acad. Sci. Fenn. Math. 9 (1984), 3–25. http://dx.doi.org/10.5186/aasfm.1984.0905CrossrefGoogle Scholar

[10] COTIRLA, L. I.: Harmonic univalent functions defined by an integral operator, Acta Univ. Apulensis Math. Inform. 17 (2009), 95–105. Google Scholar

[11] DE BRANGES, L.: A proof of the Bierbach conjecture, ActaMath. 154 (1985), 137–152. Google Scholar

[12] DZIOK, J.— SRIVASTAVA, H. M.: Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), 7–18. http://dx.doi.org/10.1080/10652460304543CrossrefGoogle Scholar

[13] EL-ASHWAH, R. M.— AOUF, M. K.: New classes of p-valent harmonic functions, Bull. Math. Anal. Appl. 2 (2010), No. 3, 53–64. Google Scholar

[14] GOODMAN, A. W.: Univalent functions and non-analytic curves, Proc. Amer. Math. Soc. 8 (1957), 598–601. http://dx.doi.org/10.1090/S0002-9939-1957-0086879-9CrossrefGoogle Scholar

[15] GOODMAN, A.W.: On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87–92. Google Scholar

[16] HOHLOV, Y. E.: Operators and operations in the class of univalent functions, Izv.Vyssh. Uchebn. Zaved. Mat. 10 (1978), 83–89 (Russian). Google Scholar

[17] JAHANGIRI, J. M.: Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), 470–477. http://dx.doi.org/10.1006/jmaa.1999.6377CrossrefGoogle Scholar

[18] JAHANGIRI, J. M.— SILVERMAN, H.: Harmonic univalent functions with varying arguments, Int. J. Appl. Math. 8 (2002), 267–275. Google Scholar

[19] JAHANGIRI, J. M.— MURUGUSUNDARAMOORTHY, G.— VIJAYA, K.: Salageantype harmonic univalent functions, South. J. Pure Appl. Math. 2 (2002), 77–82. Google Scholar

[20] KANAS, S.— WISNIOWSKA, A.: Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327–336. http://dx.doi.org/10.1016/S0377-0427(99)00018-7CrossrefGoogle Scholar

[21] KANAS, S.: Stability of convolution and dual sets for the class of k-uniformly convex and k-starlike functions, Folia. Sci. Tech. Rzeszów Math.170 (1998), 51–64. Google Scholar

[22] KIM, Y. C.— JAHANGIRI, J. M.— CHOI, J. H.: Certain convex harmonic functions, Int. J. Math. Math. Sci. 29 (2002), 459–465. http://dx.doi.org/10.1155/S0161171202007585CrossrefGoogle Scholar

[23] MURUGUSUNDARAMOORTHY, G.: A class of Ruscheweyh-type harmonic univalent functions with varying arguments, Southwest J. Pure Appl. Math. 2 (2002), 90–95. Google Scholar

[24] OWA, S.: On the distortion theorems I, Kyungpook Math. J. 18 (1978), 53–59. Google Scholar

[25] OWA, S.— SRIVASTAVA, H. M.: Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057–1077. http://dx.doi.org/10.4153/CJM-1987-054-3CrossrefGoogle Scholar

[26] RONNING, F.: Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189–196. http://dx.doi.org/10.1090/S0002-9939-1993-1128729-7CrossrefGoogle Scholar

[27] ROSY, T.— STEPHEN, B. A.— SUBRAMANIAN, K. G.: Goodman-Ronning-type harmonic univalent functions, Kyungpook Math. J. 41 (2001), 45–54. Google Scholar

[28] RUSCHEWEYH, S.: New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109–115. http://dx.doi.org/10.1090/S0002-9939-1975-0367176-1CrossrefGoogle Scholar

[29] RUSCHEWEYH, S.: Neighbourhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521–527. http://dx.doi.org/10.1090/S0002-9939-1981-0601721-6CrossrefGoogle Scholar

[30] SILVERMAN, H.: Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), 283–289. http://dx.doi.org/10.1006/jmaa.1997.5882CrossrefGoogle Scholar

[31] SILVERMAN, H.— SILVIA, E. M.: Subclasses of harmonic univalent functions, N.Z. J. Math. 28 (1999), 275–284. Google Scholar

[32] SILVERMAN, H.— MURUGUSUNDARAMOORTHY, G.— VIJAYA, K.: A class of starlike functions defined by the Dziok-Srivastava operator, Kyungpook Math. J. 49 (2009), 95–106. http://dx.doi.org/10.5666/KMJ.2009.49.1.095CrossrefGoogle Scholar

## Comments (0)