[1] ALVAREZ, J.— GUZMÁN-PARTIDA, M.— PÉREZ-ESTEVA, S.: Harmonic extensions of distributions, Math. Nachr. 280 (2007), 1443–1466. http://dx.doi.org/10.1002/mana.200510558CrossrefWeb of ScienceGoogle Scholar

[2] ANG, D. D.— SCHMITT, K.— VY, L. K.: A multidimensional analogue of the Denjoy-Perron-Henstock-Kurzweil integral, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 355–371. Google Scholar

[3] AXLER, S.— BOURDON, P.— RAMEY, W.: Harmonic Function Theory, Springer-Verlag, New York, 2001. http://dx.doi.org/10.1007/978-1-4757-8137-3CrossrefGoogle Scholar

[4] BARROS-NETO, J.: An Introduction to the Theory of Distributions, Marcel Dekker, New York, 1973. Google Scholar

[5] BARTLE, R. G.: Elements of Integration, Wiley, New York, 1966. Google Scholar

[6] ČELIDZE, V. G.— DŽVARŠEĭŠVILI, A. G.: The Theory of the Denjoy Integral and some Applications, World Scientific, Singapore, 1989. http://dx.doi.org/10.1142/0935CrossrefGoogle Scholar

[7] CICHOCKA, A.— KIERAT, W.: An application of the Wiener functions to the Dirichlet problem of the Laplace equation, Integral Transforms Spec. Funct. 7 (1998), 13–20. http://dx.doi.org/10.1080/10652469808819182CrossrefGoogle Scholar

[8] CLARKSON, J. A.: Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414. http://dx.doi.org/10.1090/S0002-9947-1936-1501880-4CrossrefGoogle Scholar

[9] FOLLAND, G. B.: Real Analysis, Wiley, New York, 1999. Google Scholar

[10] FRIEDLANDER, F. G.— JOSHI, M.: Introduction to the Theory of Distributions, Cambridge University Press, Cambridge, 1999. Google Scholar

[11] LEADER, S.: The Kurzweil-Henstock Integral and Its Differentials, Marcel Dekker, New York, 2001. Google Scholar

[12] LIEB, E. H.— LOSS, M.: Analysis, Amer. Math. Soc., Providence, RI, 2001. Google Scholar

[13] MIKUSIŃSKI, P.— OSTASZEWSKI, K.: Embedding Henstock integrable functions into the space of Schwartz distributions, Real Anal. Exchange 14 (1988–89), 24–29. Google Scholar

[14] RUDIN, W.: Real and Complex Analysis, McGraw-Hill, New York, 1987. Google Scholar

[15] SCHWARTZ, L.: Th`eorie des distributions, Hermann, Paris, 1966. Google Scholar

[16] TALVILA, E.: The Distributional Denjoy Integral, Real Anal. Exchange 33 (2008), 51–82. Google Scholar

[17] TALVILA, E.: Convolutions with the continuous primitive integral, Abstr. Appl. Anal. 2009 (2009), Art. ID 307404. Web of ScienceGoogle Scholar

[18] TALVILA, E.: The regulated primitive integral, Illinois J. Math. 53 (2009), 1187–1219. Google Scholar

[19] TALVILA, E.: Integrals and Banach spaces for finite order distributions, Czechoslovak Math. J. 62 (2012), 77–104. http://dx.doi.org/10.1007/s10587-012-0018-5CrossrefWeb of ScienceGoogle Scholar

[20] YOSIDA, K.: Functional Analysis, Springer-Verlag, Berlin, 1980. http://dx.doi.org/10.1007/978-3-642-61859-8CrossrefGoogle Scholar

[21] ZEMANIAN, A. H.: Distribution Theory and Transform Analysis, Dover, New York, 1987. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.