Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia


IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 65, Issue 1

Issues

Sharp Inequalities for Polygamma Functions

Bai-Ni Guo / Feng Qi
  • College of Mathematics Inner Mongolia University for Nationalities Tongliao City Inner Mongolia Autonomous Region 028043 CHINA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiao-Lian Zhao / Qiu-Ming Luo
Published Online: 2015-03-25 | DOI: https://doi.org/10.1515/ms-2015-0010

Abstract

In the paper, the authors review some inequalities and the (logarithmically) complete monotonicity concerning the gamma and polygamma functions and, more importantly, present a sharp double inequality for bounding the polygamma function by rational functions.

Keywords : inequality; polygamma function; psi function; completely monotonic function; logarithmically completely monotonic function

References

  • [1] ABRAMOWITZ, M.-STEGUN, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55, U.S. Government Printing Office, Washington, 1965.Google Scholar

  • [2] ALLASIA, G.-GIORDANO, C.-PEČARIĆ, J.: Inequalities for the gamma function relating to asymptotic expasions, Math. Inequal. Appl. 5 (2002), 543-555.Google Scholar

  • [3] ALZER, H.: On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), 373-389.CrossrefGoogle Scholar

  • [4] ALZER, H.: Sharp inequalities for the digamma and polygamma functions, ForumMath. 16 (2004), 181-221.Google Scholar

  • [5] ALZER, H.- BATIR, N.: Monotonicity properties of the gamma function, Appl. Math. Lett. 20 (2007), 778-781; http://dx.doi.org/10.1016/j.aml.2006.08.026.CrossrefGoogle Scholar

  • [6] ALZER, H.-GRINSHPAN, A. Z.: Inequalities for the gamma and q-gamma functions, J. Approx. Theory 144 (2007), 67-83.Google Scholar

  • [7] ATANASSOV, R. D.-TSOUKROVSKI, U. V.: Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci. 41 (1988), No. 2, 21-23.Google Scholar

  • [8] BATIR, N.: An interesting double inequality for Euler’s gamma function, J. Inequal Pure Appl. Math. 5 (2004), No. 4, Art. 97; http://www.emis.de/journals/JIPAM/article452.html.Google Scholar

  • [9] BATIR, N.: Inequalities for the gamma function, Arch.Math. (Basel) 91 (2008), 554-563.CrossrefGoogle Scholar

  • [10] BATIR, N.: On some properties of digamma and polygamma functions, J. Math. Anal. Appl. 328 (2007), 452-465; http://dx.doi.org/10.1016/j.jmaa.2006.05.065.CrossrefGoogle Scholar

  • [11] BATIR, N.: Some new inequalities for gamma and polygamma functions, J. Inequal. Pure Appl. Math. 6 (2005), No. 4, Art. 103; http://www.emis.de/journals/JIPAM/article577.html.Google Scholar

  • [12] BERG, C.: Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (2004), 433-439.CrossrefGoogle Scholar

  • [13] CHEN, C.-P.-QI, F.: Logarithmically completely monotonic functions relating to the gamma function, J. Math. Anal. Appl. 321 (2006), no. 1, 405-411; http://dx.doi.org/10.1016/j.jmaa.2005.08.056.CrossrefGoogle Scholar

  • [14] CHU, Y.-M.-ZHANG, X.-M.-TANG, X.-M.: An elementary inequality for psi function, Bull. Inst. Math. Acad. Sin. (N.S.) 3 (2008), 373-380.Google Scholar

  • [15] CHU, Y.-M.-ZHANG, X.-M.-ZHANG, Z.-H.: The geometric convexity of a function involving gamma function with applications, Commun. Korean Math. Soc. 25 (2010), 373-383; <http://dx.doi.org/10.4134/CKMS.2010.25.3.373>.CrossrefGoogle Scholar

  • [16] ELEZOVIĆ, N.-GIORDANO, C.-PEˇCARIĆ, J.: The best bounds in Gautschi’s inequality, Math. Inequal. Appl. 3 (2000), 239-252.Google Scholar

  • [17] GRINSHPAN, A. Z.-ISMAIL, M. E. H.: Completely monotonic functions involving the gamma and q-gamma functions, Proc. Amer. Math. Soc. 134 (2006), 1153-1160.Google Scholar

  • [18] GUO, B.-N.-QI, F.: A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications, J. Korean Math. Soc. 48 (2011), 655-667; http://dx.doi.org/10.4134/JKMS.2011.48.3.655.CrossrefGoogle Scholar

  • [19] GUO, B.-N.-CHEN, R.-J.-QI, F.: A class of completely monotonic functions involving the polygamma functions, J. Math. Anal. Approx. Theory 1 (2006), 124-134.Google Scholar

  • [20] GUO, B.-N.-QI, F.: A completely monotonic function involving the tri-gamma function and with degree one, Appl. Math. Comput. 218 (2012), 9890-9897; http://dx.doi.org/10.1016/j.amc.2012.03.075.CrossrefGoogle Scholar

  • [21] GUO, B.-N.-QI, F.: A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72 (2010), 21-30.Google Scholar

  • [22] GUO, B.-N.-QI, F.: An extension of an inequality for ratios of gamma functions, J. Approx. Theory 163 (2011), 1208-1216; http://dx.doi.org/10.1016/j.jat.2011.04.003.CrossrefGoogle Scholar

  • [23] GUO, B.-N.-QI, F.: Monotonicity of functions connected with the gamma function and the volume of the unit ball, Integral Transforms Spec. Funct. 23 (2012), 701-708; http://dx.doi.org/10.1080/10652469.2011.627511.CrossrefGoogle Scholar

  • [24] GUO, B.-N.-QI, F.: Refinements of lower bounds for polygamma functions, Proc. Amer. Math. Soc. 141 (2013), 1007-1015; http://dx.doi.org/10.1090/S0002-9939-2012-11387-5.CrossrefGoogle Scholar

  • [25] GUO, B.-N.-QI, F.: Some properties of the psi and polygamma functions, Hacet. J. Math. Stat. 39 (2010), 219-231.Google Scholar

  • [26] GUO, B.-N.-QI, F.: Two new proofs of the complete monotonicity of a function involving the psi function, Bull. Korean Math. Soc. 47 (2010), 103-111; http://dx.doi.org/10.4134/bkms.2010.47.1.103.CrossrefGoogle Scholar

  • [27] GUO, B.-N.-QI, F.-SRIVASTAVA, H. M.: Some uniqueness results for the nontrivially complete monotonicity of a class of functions involving the polygamma and related functions, Integral Transforms Spec. Funct. 21 (2010), 849-858; http://dx.doi.org/10.1080/10652461003748112.CrossrefGoogle Scholar

  • [28] GUO, B.-N.-ZHANG, Y.-J.-QI, F.: Refinements and sharpenings of some double inequalities for bounding the gamma function, J. Inequal. Pure Appl. Math. 9 (2008), No. 1, Art. 17; http://www.emis.de/journals/JIPAM/article953.html.Google Scholar

  • [29] GUO, B.-N.-ZHAO, J.-L.-QI, F.: A completely monotonic function involving the triand tetra-gamma functions, Math. Slovaca 63 (2013), 469-478; http://dx.doi.org/10.2478/s12175-013-0109-2.CrossrefGoogle Scholar

  • [30] GUO, S.-QI, F.-SRIVASTAVA, H. M.: A class of logarithmically completely monotonic functions related to the gamma function with applications, Integral Transforms Spec. Funct. 23 (2012), 557-566; http://dx.doi.org/10.1080/10652469.2011.611331.CrossrefGoogle Scholar

  • [31] GUO, S.-QI, F.-SRIVASTAVA, H. M.: Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic, Integral Transforms Spec. Funct. 18 (2007), 819-826; http://dx.doi.org/10.1080/10652460701528933.CrossrefGoogle Scholar

  • [32] GUO, S.-QI, F.-SRIVASTAVA, H. M.: Supplements to a class of logarithmically completely monotonic functions associated with the gamma function, Appl. Math. Comput. 197 (2008), 768-774; http://dx.doi.org/10.1016/j.amc.2007.08.011.CrossrefGoogle Scholar

  • [33] GUO, S.-SRIVASTAVA, H. M.: A class of logarithmically completely monotonic functions, Appl. Math. Lett. 21 (2008), 1134-1141. 117CrossrefGoogle Scholar

  • [34] HORN, R. A.: On infinitely divisible matrices, kernels and functions, Z. Wahrscheinlichkeitstheorie Verw. Geb. 8 (1967), 219-230.CrossrefGoogle Scholar

  • [35] ISMAIL, M. E. H.-MULDOON, M. E.: Inequalities and monotonicity properties for gamma and q-gamma functions. In: Approximation and Computation: A Festschrift in Honour of Walter Gautschi (R. V. M. Zahar, ed.), Internat. Ser. Numer. Math. 119, Birkhauser, Basel, 1994, pp. 309-323.Google Scholar

  • [36] KAZARINOFF, D. K.: On Wallis’ formula, Edinburgh Math. Notes 40 (1956), 19-21.CrossrefGoogle Scholar

  • [37] KOUMANDOS, S.: Remarks on some completely monotonic functions, J. Math. Anal. Appl. 324 (2006), 1458-1461.CrossrefGoogle Scholar

  • [38] KOUMANDOS, S.-PEDERSEN, H. L.: Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function, J. Math. Anal. Appl. 355 (2009), 33-40.Google Scholar

  • [39] LÜ, Y.-P.-SUN, T.-C.-CHU, T.-C.: Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic, J. Inequal. Appl. 2011 (2011), Article 36; http://dx.doi.org/10.1186/1029-242X-2011-36.CrossrefGoogle Scholar

  • [40] MERKLE, M.: Logarithmic convexity and inequalities for the gamma function, J. Math. Anal. Appl. 203 (1996), 369-380.Google Scholar

  • [41] MITRINOVIĆ, D. S.-PEˇCARIĆ, J. E.-FINK, A. M.: Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993.Google Scholar

  • [42] MORTICI, C.: Very accurate estimates of the polygamma functions, Asymptot. Anal. 68 (2010), 125-134; http://dx.doi.org/10.3233/ASY-2010-0983.CrossrefGoogle Scholar

  • [43] MULDOON, M. E.: Some monotonicity properties and characterizations of the gamma function, Aequationes Math. 18 (1978), 54-63.Google Scholar

  • [44] QI, F.: A completely monotonic function involving the divided difference of the psi function and an equivalent inequality involving sums, ANZIAM J. 48 (2007), 523-532; http://dx.doi.org/10.1017/S1446181100003199.CrossrefGoogle Scholar

  • [45] QI, F.: Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058, 84 pp.; http://dx.doi.org/10.1155/2010/493058.CrossrefGoogle Scholar

  • [46] FENG Qi-QIU-MING LUO: Bounds for the ratio of two gamma functions: from Wendel’s asymptotic relation to ElezoviĆ-Giordano-Pečari Ć’s theorem, J. Inequal. Appl. 2013 (2013), 542, 20 pages; http://dx.doi.org/10.1186/1029-242X-2013-542.CrossrefGoogle Scholar

  • [47] QI, F.: Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct. 18 (2007), 503-509; http://dx.doi.org/10.1080/10652460701358976.CrossrefGoogle Scholar

  • [48] QI, F.-CHEN, C.-P.: A complete monotonicity property of the gamma function, J.Math. Anal. Appl. 296 (2004), 603-607; http://dx.doi.org/10.1016/j.jmaa.2004.04.026.CrossrefGoogle Scholar

  • [49] QI, F.-CUI, R.-Q.-CHEN, C.-P.-GUO, B.-N.: Some completely monotonic functions involving polygamma functions and an application, J. Math. Anal. Appl. 310 (2005), 303-308; http://dx.doi.org/10.1016/j.jmaa.2005.02.016.CrossrefGoogle Scholar

  • [50] QI, F.-GUO, B.-N.: A logarithmically completely monotonic function involving the gamma function, Taiwanese J. Math. 14 (2010), 1623-1628.Google Scholar

  • [51] QI, F.-GUO, B.-N.: An inequality involving the gamma and digamma functions, http://arxiv.org/abs/1101.4698.Google Scholar

  • [52] QI, F.-GUO, B.-N.: Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (2004), No. 1, Art. 8, 63-72; http://rgmia.org/v7n1.php.Google Scholar

  • [53] QI, F.-GUO, B.-N.: Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications, Commun. Pure Appl. Anal. 8 (2009), 1975-1989; <http://dx.doi.org/10.3934/cpaa.2009.8.1975>.CrossrefGoogle Scholar

  • [54] QI, F.-GUO, B.-N.: Necessary and sufficient conditions for a function involving divided differences of the di- and tri-gamma functions to be completely monotonic, http://arxiv.org/abs/0903.3071.Google Scholar

  • [55] QI, F.-GUO, B.-N.: Necessary and sufficient conditions for functions involving the triand tetra-gamma functions to be completely monotonic, Adv. Appl. Math. 44 (2010), 71-83; http://dx.doi.org/10.1016/j.aam.2009.03.003.CrossrefGoogle Scholar

  • [56] QI, F.-GUO, B.-N.: Sharp inequalities for polygamma functions, http://arxiv.org/abs/0903.1984.Google Scholar

  • [57] GUO, B.-N.-QI, F.: Sharp inequalities for the psi function and harmonic numbers, Analysis (Munich) 34 (2014), 201-208; http://dx.doi.org/10.1515/anly-2014-0001.CrossrefGoogle Scholar

  • [58] QI, F.-GUO, B.-N.: Some properties of extended remainder of Binet’s first formula for logarithm of gamma function, Math. Slovaca 60 (2010), 461-470; http://dx.doi.org/10.2478/s12175-010-0025-7.CrossrefGoogle Scholar

  • [59] QI, F.-GUO, B.-N.-CHEN, C.-P.: Some completely monotonic functions involving the gamma and polygamma functions, J. Aust. Math. Soc. 80 (2006), 81-88; http://dx.doi.org/10.1017/S1446788700011393.CrossrefGoogle Scholar

  • [60] QI, F.-Guo, S.-GUO, B.-N.: Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math. 233 (2010), 2149-2160; http://dx.doi.org/10.1016/j.cam.2009.09.044.CrossrefGoogle Scholar

  • [61] QI, F.-LUO, Q.-M.: Bounds for the ratio of two gamma functions-from Wendel’s and related inequalities to logarithmically completely monotonic functions, Banach J. Math. Anal. 6 (2012), 132-158.Google Scholar

  • [62] QI, F.-WEI, C.-F.-GUO, B.-N.: Complete monotonicity of a function involving the ratio of gamma functions and applications, Banach J. Math. Anal. 6 (2012), 35-44.Google Scholar

  • [63] SONG, Y.-Q.-CHU, Y.-M.-WU, L.-L.: An elementary double inequality for gamma function, Int. J. Pure Appl. Math. 38 (2007), 549-554.Google Scholar

  • [64] WU, L.-L.-CHU, Y.-M.: An inequality for the psi functions, Appl. Math. Sci. (Ruse) 2 (2008), 545-550.Google Scholar

  • [65] WU, L.-L.-CHU, Y.-M.-TANG, X.-M.: Inequalities for the generalized logarithmic mean and psi functions, Int. J. Pure Appl. Math. 48 (2008), 117-122.Google Scholar

  • [66] ZHANG, X.-M.-CHU, Y.-M.: A double inequality for gamma function, J. Inequal. Appl. 2009 (2009), Article ID 503782, 7 pp.; http://dx.doi.org/10.1155/2009/503782.CrossrefGoogle Scholar

  • [67] ZHANG, X.-M.-CHU, Y.-M.: A double inequality for the gamma and psi functions, Int. J. Mod. Math. 3 (2008), 67-73.Google Scholar

  • [68] ZHAO, T.-H.-CHU, Y.-M.: A class of logarithmically completely monotonic functions associated with a gamma function, J. Inequal. Appl. 2010 (2010), Article ID 392431, 11 pp.; http://dx.doi.org/10.1155/2010/392431.CrossrefGoogle Scholar

  • [69] ZHAO, T.-H.-CHU, Y.-M.-JIANG, Y.-P.: Monotonic and logarithmically convex properties of a function involving gamma functions, J. Inequal. Appl. 2009 (2009), Article ID 728612, 13 pp.; http://dx.doi.org/10.1155/2009/728612.CrossrefGoogle Scholar

  • [70] ZHAO, T.-H.-CHU, Y.-M.-WANG, H.: Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal. 2011 (2011), Article ID 896483, 13 pp.; http://dx.doi.org/10.1155/2011/896483.CrossrefGoogle Scholar

  • [71] ZHAO, J.-L.-GUO, B.-N.-QI, F.: A refinement of a double inequality for the gamma function, Publ. Math. Debrecen 80 (2012), 333-342; http://dx.doi.org/10.5486/PMD.2012.5010.CrossrefGoogle Scholar

  • [72] ZHAO, J.-L.-GUO, B.-N.-QI, F.: Complete monotonicity of two functions involving the tri- and tetra-gamma functions, Period. Math. Hungar. 65 (2012), 147-155; <http://dx.doi.org/10.1007/s10998-012-9562-x>.CrossrefGoogle Scholar

  • [73] WIDDER, D. V.: The Laplace Transform, Princeton University Press, Princeton, NJ, 1946. Google Scholar

About the article

Received: 2011-11-21

Accepted: 2012-08-04

Published Online: 2015-03-25

Published in Print: 2015-02-01


Citation Information: Mathematica Slovaca, Volume 65, Issue 1, Pages 103–120, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2015-0010.

Export Citation

© 2015 Mathematical Institute Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zhenhang Yang and Jing-Feng Tian
Journal of Mathematical Analysis and Applications, 2018
[3]
Zhen-Hang Yang
Journal of Mathematical Analysis and Applications, 2017, Volume 455, Number 1, Page 761

Comments (0)

Please log in or register to comment.
Log in