Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year

IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

See all formats and pricing
More options …
Volume 65, Issue 1


Existence Results for Some Higher-Order Evolution Equations with Time-Dependent Unbounded Operator Coefficients

Toka Diagana
Published Online: 2015-03-25 | DOI: https://doi.org/10.1515/ms-2015-0011


In this paper we establish the existence of C(n)-pseudo almost automorphic mild solutions to some n-order evolution equations involving not only time-dependent operator coefficients but also pseudo almost automorphic forcing terms. To illustrate our abstract results, the existence of C(2)-pseudo almost automorphic mild solutions to some damped second-order nonautonomous differential equations, which among other things model the nonautonomous damped beam equation, will be discussed.

Keywords: evolution family; higher-order evolution equations; exponential dichotomy; exponentially stable; Acquistapace-Terreni; damped second-order differential equation; bean equation; C(n)-pseudo-almost automorphic


  • [1] ACQUISTAPACE, P.: Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations 1 (1988), 433-457.Google Scholar

  • [2] ACQUISTAPACE, P.-TERRENI, B.: A unified approach to abstract linear nonautonomous parabolic equations, Rend. Semin. Mat. Univ. Padova 78 (1987), 47-107.Google Scholar

  • [3] ADAMCZAK, A.: Cn-almost periodic functions, Comment. Math. (Prace Mat.) 37 (1997), 1-12.Google Scholar

  • [4] ADAMCZAK, M.-STOÍNSKI, S.: On the (NC(n))-almost periodic functions. In: Proceedings of the 6th. Conference on Functions Spaces (R. Grz¸aślewicz, Cz. Ryll-Nardzewski, H. Hudzik, J. Musielak, eds.), World Scientific Publishing, River Edge, NJ, 2003, pp. 39-48.Google Scholar

  • [5] AL-ISLAM, N. S.-ALSULAMI, S.-DIAGANA, T.: Existence of weighted pseudo antiperiodic solutions to some non-autonomous differential equations, Appl. Math. Comput. 218 (2012), 6536-6548.Web of ScienceGoogle Scholar

  • [6] AMANN, H.: Linear and Quasilinear Parabolic Problems, Birkh¨auser, Berlin, 1995.Google Scholar

  • [7] BAILLON, J. B.-BLOT, J.-NGUÉR´ EKATA, G. M.-PENNEQUIN, D.: On C(n)-almost periodic solutions to some nonautonomous differential equations in Banach spaces, Comment. Math. (Prace Mat.) 46 (2006), 263-273.Google Scholar

  • [8] BAROUN, M.-BOULITE, S.-DIAGANA, T.-MANIAR, L.: Almost periodic solutions to some semilinear non-autonomous thermoelastic plate equations, J. Math. Anal. Appl. 349 (2009), 74-84.Google Scholar

  • [9] BUGAJEWSKI, D.-NGUÉRÉKATA, G. M.: On some classes of almost periodic functions in abstract spaces, Int. J. Math. Math. Sci. 61 (2004), 3237-3247.CrossrefGoogle Scholar

  • [10] CHICONE, C.-LATUSHKIN, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surveys Monogr. 70, Amer. Math. Soc., Providence, RI, 1999.Google Scholar

  • [11] DIAGANA, T.-NELSON, V.: C(n)-Pseudo almost automorphy and its applications to some higher-order differential equations, Nonlinear Stud. 19 (2012), 443-455.Google Scholar

  • [12] DIAGANA, T.: Almost periodic solutions for some higher-order nonautonomous differential equations with operator coefficients, Math. Comput. Modelling 54 (2011), 2672-2685.CrossrefGoogle Scholar

  • [13] DIAGANA, T.: Weighted pseudo-almost periodic functions and applications, C. R. Acad. Sci. Paris, Ser. I 343 (2006), 643-646.Google Scholar

  • [14] DIAGANA, T.: Almost periodic solutions to some second-order nonautonomous differential equations, Proc. Amer. Math. Soc. 140 (2012), 279-289.Google Scholar

  • [15] ELAZZOUZI, A.: C(n)-almost periodic and C(n)-almost automorphic solutions for a class of partial functional differential equations with finite delay, Nonlinear Anal. Hybrid Syst. 4 (2010), 672-688.Web of ScienceGoogle Scholar

  • [16] ENGEL, K. J.-NAGEL, R.: One Parameter Semigroups for Linear Evolution Equations. Grad. Texts in Math., Springer Verlag, Berlin, 1999.Google Scholar

  • [17] EZZINBI, K.-NELSON, N.-N’GUÉRÉKATA, G. M.: C(n)-almost automorphic solutions of some nonautonomous differential equations, Cubo 10 (2008), 61-74.Google Scholar

  • [18] EZZINBI, K.-FATAJOU, S.-NGUÉRÉKATA, G. M.: Massera type theorem for the existence of C(n)-almost periodic solutions for partial functional differential equations with infinite delay, Nonlinear Anal. 69 (2008), 1413-1424.Google Scholar

  • [19] EZZINBI, K.-FATAJOU, S.-N’GUÉRÉKATA, G. M.: C(n)-almost automorphic solutions for partial neutral functional differential equations, Appl. Anal. 86 (2007), 1127-1146.CrossrefGoogle Scholar

  • [20] LIANG, J.-MANIAR, L.-N’GUÉRÉKATA, G. M.-XIAO, T. J.: Existence and uniqueness of C(n)-almost periodic solutions to some ordinary differential equations, Nonlinear Anal. 66 (2007), 1899-1910.Google Scholar

  • [21] LIU, Y.: Anti-periodic solutions of nonlinear first order impulsive functional differential equations, Math. Slovaca 62 (2012), 695-720.Web of ScienceGoogle Scholar

  • [22] LIANG, J.-N’GUÉR´ EKATA, G. M.-XIAO, T. J.-ZHANG J.: Some properties of pseudo almost automorphicfunctions and applications to abstract differential equations, Nonlinear Anal. 70 (2009), 2731-2735.Google Scholar

  • [23] LIANG, J.-XIAO, T. J.-ZHANG J.: Decomposition of weighted pseudo-almost periodic functions, Nonlinear Anal. 73 (2010), 3456-3461.Google Scholar

  • [24] LUNARDI, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progr. Nonlinear Differential Equations Appl. 16, Birkh¨auser Verlag, Basel, 1995.Google Scholar

  • [25] SCHNAUBELT, R.: Parabolic evolution equations with asymptotically autonomous delay, Trans. Amer. Math. Soc. 356 (2004), 3517-3543.CrossrefGoogle Scholar

  • [26] XIAO, T. J.-ZHU, X. X.-LIANG, J.: Pseudo-almost automorphic mild solutions to nonautonomous differential equations and applications, Nonlinear Anal. 70 (2009), 4079-4085.Google Scholar

  • [27] XIAO, T. J.-LIANG, J.-ZHANG, J.: Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces, Semigroup Forum 76 (2008), 518-524.CrossrefWeb of ScienceGoogle Scholar

  • [28] XIAO, T. J.-LIANG, J.: The Cauchy Problem for Higher-Order Abstract Differential Equations. Lecture Notes in Math. 1701, Springer, Berlin, 1998.Google Scholar

  • [29] ZHANG, X.-TANG, X.: Non-constant periodic solutions for second order Hamiltonian system with a p-Laplacian, Math. Slovaca 62 (2012), 231-246. Web of ScienceGoogle Scholar

About the article

Received: 2012-06-02

Accepted: 2012-09-09

Published Online: 2015-03-25

Published in Print: 2015-02-01

Citation Information: Mathematica Slovaca, Volume 65, Issue 1, Pages 121–140, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2015-0011.

Export Citation

© 2015 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in