Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

See all formats and pricing
More options …
Volume 65, Issue 4


The Riesz Hull of a Semisimple MV-Algebra

D. Diaconescu / I. Leuștean
Published Online: 2015-10-15 | DOI: https://doi.org/10.1515/ms-2015-0056


MV-algebras and Riesz MV-algebras are categorically equivalent to abelian lattice-ordered groups with strong unit and, respectively, with Riesz spaces (vector-lattices) with strong unit. A standard construction in the literature of lattice-ordered groups is the vector-lattice hull of an archimedean latticeordered group. Following a similar approach, in this paper we define the Riesz hull of a semisimple MV-algebra.

Keywords : MV-algebra; Riesz MV-algebra; Riesz hull; v-hull


  • [1] BALL, R.-GEORGESCU, G.-LEUS﹐TEAN, I.: Cauchy completions of MV-algebras, Algebra Universalis 47 (2002), 367-407.CrossrefWeb of ScienceGoogle Scholar

  • [2] BELLUCE, L. P.: Semisimple algebras of infinite valued logic and bold fuzzy set theory, Canad. J. Math. 38 (1986), 1356-1379.Google Scholar

  • [3] BLEIER, R. D.: Minimal vector lattice covers, Bull. Aust. Math. Soc. 5 (1971), 331-335.Google Scholar

  • [4] CHANG, C. C.: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.CrossrefGoogle Scholar

  • [5] CIGNOLI, R.-D’OTTAVIANO, I. M. L.-MUNDICI, D.: Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic, Dordrecht, 2000.Google Scholar

  • [6] COHN, P. M.: Universal Algebra, Harper & Row, New York-Evanston-London, 1965.Google Scholar

  • [7] CONRAD, P. F.: Minimal vector lattice covers, Bull. Aust. Math. Soc. 4 (1971), 35-39.Google Scholar

  • [8] DARNEL, M. R.: Theory of Lattice-Ordered Groups, Marcel Dekker, Inc., New York, 1995.Google Scholar

  • [9] DI NOLA, A.: Representation and Reticulation by Quotients of MV-Algebras, Ric. Mat. 40 (1991), 291-297.Google Scholar

  • [10] DI NOLA, A.-DVUREČENSKIJ, A.: Product MV-algebras, Mult.-Valued Logic Logics 6 (2001), 193-215.Google Scholar

  • [11] DI NOLA, A.-LEUS﹐TEAN, I.: Handbook of Mathematical Fuzzy Logic - Vol. 1 (P. Cintula, P. H’ajek, C. Noguera, eds.), Stud. Log. (Lond.) 37 College Publications, London, 2011, Chapter: Lukasiewicz logic and MV-algebras.Google Scholar

  • [12] DI NOLA, A.-LEUS﹐TEAN, I.: Łukasiewicz logic and Riesz spaces, Soft Comput. (2013) (To appear).Google Scholar

  • [13] DI NOLA, A.-SESSA, S.: On MV-algebras of continuous functions. In: Non Classical Logics and Their Applications to Fuzzy Subsets (U. Höhle, E. P. Klement, eds.), Kluwer Acad. Publ., Dordrecht, 1995, pp. 23-32.Google Scholar

  • [14] GERLA, B.: Rational Lukasiewicz logic and DMV-algebras, Neural Networks World 11 (2001), 579-584.Google Scholar

  • [15] LUXEMBURG, W. A. J.-ZAANEN, A. C.: Riesz Spaces I, North-Holland, Amsterdam, 1971.Google Scholar

  • [16] MARTINEZ, J.: Hull classes of Archimedean lattice-ordered groups with unit: a survey. In: Ordered Algebraic Structures, Kluwer Acad. Publ., Dordrecht, 2002, pp. 89-121.Google Scholar

  • [17] MONTAGNA, F.: Subreducts of MV-algebras with product and product residuation, Algebra Universalis 53 (2005), 109-137.CrossrefGoogle Scholar

  • [18] MUNDICI, D.: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63. CrossrefGoogle Scholar

About the article

Received: 2013-06-01

Accepted: 2013-12-11

Published Online: 2015-10-15

Published in Print: 2015-08-01

Citation Information: Mathematica Slovaca, Volume 65, Issue 4, Pages 801–816, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2015-0056.

Export Citation

© 2015.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Antonio Di Nola, Serafina Lapenta, and Ioana Leuştean
Annals of Pure and Applied Logic, 2017
S. Lapenta and I. Leuştean
Fuzzy Sets and Systems, 2016, Volume 298, Page 194
S. Lapenta and I. Leuştean
Journal of Pure and Applied Algebra, 2016, Volume 220, Number 4, Page 1538

Comments (0)

Please log in or register to comment.
Log in