[1]

Altwegg, M.: *Zur Axiomatik der teilweise geordneten Mengen*, Comment. Math. Helv. **24** (1950), 149–155.Google Scholar

[2]

Čech, E.: *Topological Spaces*, Wiley, New York, 1966.Google Scholar

[3]

Bludov, V. V.—Droste, M.—Glass, A. M. W.: *Automorphism groups of totally ordered sets: a retrospective survey*, Math. Slovaca **61** (2011), 373–388.Google Scholar

[4]

Dalen, J. van—Wattel, E. *A topological characterization of ordered spaces*, Gen. Topology Appl. **3** (1973), 347–354.Google Scholar

[5]

Deàk, E.: *Theory and Applications of Directional Structures*. Topics in Topology (Proc. Colloq., Keszthely, 1972). Colloq. Math. Soc. János Bolyai 8, North-Holland, Amsterdam, 1974.Google Scholar

[6]

Fishburn, P.: *Betweenness, order and interval graphs*, J. Pure Appl. Algebra **1** (1971), 159–178.Google Scholar

[7]

Glivenko, V.: *Geométrie des systèmes de choses normées*, Amer. J. Math. **58** (1936), 799–828.Google Scholar

[8]

Glivenko, V.: *Contributions a l’ étude des systèmes de choses normées*, Amer. J. Math. **59** (1937), 941–956.Google Scholar

[9]

Hashimoto, J.: *Betweenness geometry*, Osaka Math. J. **10** (1958), 147–158.Google Scholar

[10]

Hedlíková, J.—Katriňák, T.: *On a characterization of lattices by the betweenness relation on a problem of M. Kolibiar*, Algebra Universalis **28** (1991), 389–400.Google Scholar

[11]

Hedlíková, J.—Katriňák, T.: *Lattice betweenness relation and a generalization of Königs Lemma*, Math. Slovaca **46** (1996), 343–354.Google Scholar

[12]

Huntington, E. V.—Kline, J. R.: *Sets of independent postulates for betweenness with proof of complete independence*, Trans. Amer. Math. Soc. **26** (1915), 6–24.Google Scholar

[13]

Kay, D. C.—Womble, E. W.: *Axiomatic convexity theory and relationships between the Caratheodory, Helly, and Radon numbers*, Pacific J. Math. **38** (1971), 471–485.Google Scholar

[14]

Klaučová, O.: *Characterization of distributive multilattices by a betweenness relation*, Math. Slovaca **26** (1976), 119–129.Google Scholar

[15]

Kolibiar, M.: *Charakterisierung der Verbände durch die Relation “zwischen”*, Z. Math. Logik Glundlangen Math. **4** (1958), 89–100.Google Scholar

[16]

Lutzer, D. J.: *On generalized ordered spaces*, Dissertationes Math. (Rozprawy Mat.) **89** (1971).Google Scholar

[17]

Mendris, R.—Zlatoš, P.: *Axiomatization and undecidability results for metrizable betweenness relations*, Math. Slovaca **46** (1999), 305–313.Google Scholar

[18]

Mendris, R.—Zlatoš, P.: *Axiomatization and undecidability results for linear betweenness relations*, Proc. Amer. Math. Soc. **123** (1995), 873–882.Google Scholar

[19]

Menger, K.: *Untersuschungen über die allgemeine Metrik*, Math. Ann. **100** (1928), 75–163.Google Scholar

[20]

Peano, G.: *I principii di geometria*, Turin, 1889.Google Scholar

[21]

Peano, G.: *Sui fondamenti dellia geometria*, Riv. Math. **4** (1894), 51–90.Google Scholar

[22]

Pitcher, E.—Smiley, M. F.: *Transititivities of Betweenness*, Trans. Amer. Math. Soc. **52** (1942), 95–114.Google Scholar

[23]

Pasch, M.: *Vorlesungen über neuere Geometrie*, Teunberg, Leipzig, 1882.Google Scholar

[24]

Ploščica, M.: *On a characterization of distributive lattices by the betweenness relation*, Algebra Universalis **35** (1996), 249–255.Google Scholar

[25]

Renyi, A.: *On random generating elements of a finite Boolean algebra*, Acta Sci. Math. (Szeged) **22** (1961), 75–81.Google Scholar

[26]

Sholander, M.: *Trees, lattices, order and betweenness*, Proc. Amer. Math. Soc. **3** (1952), 369–381.Google Scholar

[27]

Šimko, J.: *Linear and R-linear betweenness spaces*, Math. Slovaca **51** (2001), 365–370.Google Scholar

[28]

Tarski, A.: *What is an Elementary Geometry?* In: The Axiomatic Method with Special Reference to Geometry and Physics. Proceedings of an International Symposium Held at the Univ. of Calif., Berkeley, Dec. 26, 1957, Jan. 4, 1958 (L. Henkin, P. Suppes, A. Tarski, eds.). Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1958, pp. 16–29.Google Scholar

[29]

Veblen, O.: *A system of axioms for geometry*, Trans. Amer. Math. Soc. **5** (1904), 343–384.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.