[1]

Adivar, M.: *A new periodicity concept for time scales*, Math. Slovaca **63** (2013), 817–828.Google Scholar

[2]

Agarwal, P. R.—Bohner, M.—Peterson, A.: *Dynamic equations on time scales: survey*, J. Comput. Appl. Math. **141** (2002), 1–26.Google Scholar

[3]

Bohner, M.—Peterson, A.: *Dynamic Equations on Time Scales: An Introduction with Applications*, Birkhauser, Boston, 2001.Google Scholar

[4]

Bohner, M.—Peterson, A.: *Advances in Dynamic Equations on Time Scales*, Birkhauser, Boston, 2003.Google Scholar

[5]

Erbe, L.—Peterson, A.—Saker, S. H.: *Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales*, J. Comput. Appl. Math. **181** (2005), 92–102.Google Scholar

[6]

Erbe, L.—Peterson, A.—Saker, S. H.: *Oscillation and asymptotic behavior a third-order nonlinear dynamic equation*, Can. Appl. Math. Q. **14** (2006), 129–147.Google Scholar

[7]

Erbe, L.—Peterson, A.—Saker, S. H.: *Hille and Nehari type criteria for third-order dynamic equations*, J. Math. Anal. Appl. **329** (2007), 112–131.Google Scholar

[8]

Hilger, S.: *Analysis on measure chains – a unified approach to continuous and discrete calculus*, Results Math. **18** (1990), 18–56.Google Scholar

[9]

Hassan, T. S.: *Oscillation of third order nonlinear delay dynamic equations on time scales*, Math. Comput. Modelling **49** (2009), 1573–1586.Google Scholar

[10]

Hassan, T. S.: *Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales*, Appl. Math. Comput. **217** (2011), 5285–5297.Google Scholar

[11]

Kac, V.—Chueng, P.: *Quantum Calculus*. Universitext, Springer, London, 2002.Google Scholar

[12]

Kubiaczyk, I.—Saker, S. H.—Sikorska-Nowak, A.: *Oscillation criteria for nonlinear neutral functional dynamic equations on time scales*, Math. Slovaca **63** (2013), 263–290.Google Scholar

[13]

Rehak, P.: *A critical oscillation constant as a variable of time scales for half-linear dynamic equations*, Math. Slovaca **60** (2010), 237–256.Google Scholar

[14]

Saker, S. H.—Grace, S. R.: *Oscillation criteria for quasi-linear functional dynamic equations on time scales*, Math. Slovaca **62** (2012), 501–524.Google Scholar

[15]

Satco, B.-R.: *Corneliu-Octavian Turcu, Henstock-Kurzweil-Pettis integral and weak topologies in nonlinear integral equations on time scales*, Math. Slovaca **63** (2013), 1347–1360.Google Scholar

[16]

Sun, T.—Xi, H.—Peng, X.: *Asymptotic behavior of solutions of higher-order dynamic equations on time scales*, Adv. Difference Equ. (2011), Article ID 237219, 14 pp..Google Scholar

[17]

Sun, T.—Xi, H.—Peng, X.—Yu, W.: *Nonoscillatory solutions for higher-order neutral dynamic equations on time scales*, Abstr. Appl. Anal. (2010), Article ID 428963, 16 pp..Google Scholar

[18]

Sun, T.—Xi, H.—Yu, W.: *Asymptotic behaviors of higher order nonlinear dynamic equations on time scales*, Appl. Math. Comput. **37** (2011), 177–192.Google Scholar

[19]

Sun, T.—Yu, W.— Xi, H.: *Oscillatory behavior and comparison for higher order nonlinear dynamic equations on time scales*, J. Appl. Math. Inform. **30** (2012), 289–304.Google Scholar

[20]

Wang, Y.—Xu, Z.: *Asymptotic properties of solutions of certain third-order dynamic equations*, Comput. Appl. Math. **236** (2012), 2354–2366.Google Scholar

[21]

Sahiner, Y.: *Oscillation of second-order delay differential equations on time scales*, Nonlinear Anal. **63** (2005), e1073–e1080.Google Scholar

[22]

Yang, J.: *Oscillation criteria for certain third-order variable delay functional dynamic equations on time scales*, Appl. Math. Comput. **43** (2013), 445–466.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.