Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia


IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2018: 0.29

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 66, Issue 3

Issues

Oscillation criteria for higher order nonlinear delay dynamic equations on time scales

Xin Wu
  • College of Information and Statistics Guangxi University of Finance and Economics Nanning, Guangxi 530003 P.R. CHINA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Taixiang Sun
  • Corresponding author
  • College of Information and Statistics Guangxi University of Finance and Economics Nanning, Guangxi 530003 P.R. CHINA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-26 | DOI: https://doi.org/10.1515/ms-2015-0166

Abstract

In this paper, we study the oscillation criteria of the following higher order nonlinear delay dynamic equation Rn(t,x(t))+b(t)|Rn1(t,x(t))|γ1Rn1(t,x(t))+q(t)f(|x(τ(t))|γ1x(τ(t)))=0

on an arbitrary time scale T with sup T = ∞, where n ≥ 2, γ > 0 is a constant, τ: TT with τ(t) ≤ t and limtτ(t)= and Rk(t,x(t))=x(t),ifk=0,rk(t)Rk1(t,x(t)),if1kn1,rn(t)|Rn1(t,x(t))|γ1Rn1(t,x(t)),ifk=n,

with rk(t) (1 ≤ kn) are positive rd-continuous functions. We give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.

MSC 2010: Primary 34K11; 39A10; 39A99

Keywords: oscillation; dynamic equation; time scale

Project Supported by NNSF of China (11461003) and NSF of Guangxi (2014GXNSFBA118003)

References

  • [1]

    Adivar, M.: A new periodicity concept for time scales, Math. Slovaca 63 (2013), 817–828.Google Scholar

  • [2]

    Agarwal, P. R.—Bohner, M.—Peterson, A.: Dynamic equations on time scales: survey, J. Comput. Appl. Math. 141 (2002), 1–26.Google Scholar

  • [3]

    Bohner, M.—Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.Google Scholar

  • [4]

    Bohner, M.—Peterson, A.: Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.Google Scholar

  • [5]

    Erbe, L.—Peterson, A.—Saker, S. H.: Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales, J. Comput. Appl. Math. 181 (2005), 92–102.Google Scholar

  • [6]

    Erbe, L.—Peterson, A.—Saker, S. H.: Oscillation and asymptotic behavior a third-order nonlinear dynamic equation, Can. Appl. Math. Q. 14 (2006), 129–147.Google Scholar

  • [7]

    Erbe, L.—Peterson, A.—Saker, S. H.: Hille and Nehari type criteria for third-order dynamic equations, J. Math. Anal. Appl. 329 (2007), 112–131.Google Scholar

  • [8]

    Hilger, S.: Analysis on measure chains – a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18–56.Google Scholar

  • [9]

    Hassan, T. S.: Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Modelling 49 (2009), 1573–1586.Google Scholar

  • [10]

    Hassan, T. S.: Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales, Appl. Math. Comput. 217 (2011), 5285–5297.Google Scholar

  • [11]

    Kac, V.—Chueng, P.: Quantum Calculus. Universitext, Springer, London, 2002.Google Scholar

  • [12]

    Kubiaczyk, I.—Saker, S. H.—Sikorska-Nowak, A.: Oscillation criteria for nonlinear neutral functional dynamic equations on time scales, Math. Slovaca 63 (2013), 263–290.Google Scholar

  • [13]

    Rehak, P.: A critical oscillation constant as a variable of time scales for half-linear dynamic equations, Math. Slovaca 60 (2010), 237–256.Google Scholar

  • [14]

    Saker, S. H.—Grace, S. R.: Oscillation criteria for quasi-linear functional dynamic equations on time scales, Math. Slovaca 62 (2012), 501–524.Google Scholar

  • [15]

    Satco, B.-R.: Corneliu-Octavian Turcu, Henstock-Kurzweil-Pettis integral and weak topologies in nonlinear integral equations on time scales, Math. Slovaca 63 (2013), 1347–1360.Google Scholar

  • [16]

    Sun, T.—Xi, H.—Peng, X.: Asymptotic behavior of solutions of higher-order dynamic equations on time scales, Adv. Difference Equ. (2011), Article ID 237219, 14 pp..Google Scholar

  • [17]

    Sun, T.—Xi, H.—Peng, X.—Yu, W.: Nonoscillatory solutions for higher-order neutral dynamic equations on time scales, Abstr. Appl. Anal. (2010), Article ID 428963, 16 pp..Google Scholar

  • [18]

    Sun, T.—Xi, H.—Yu, W.: Asymptotic behaviors of higher order nonlinear dynamic equations on time scales, Appl. Math. Comput. 37 (2011), 177–192.Google Scholar

  • [19]

    Sun, T.—Yu, W.— Xi, H.: Oscillatory behavior and comparison for higher order nonlinear dynamic equations on time scales, J. Appl. Math. Inform. 30 (2012), 289–304.Google Scholar

  • [20]

    Wang, Y.—Xu, Z.: Asymptotic properties of solutions of certain third-order dynamic equations, Comput. Appl. Math. 236 (2012), 2354–2366.Google Scholar

  • [21]

    Sahiner, Y.: Oscillation of second-order delay differential equations on time scales, Nonlinear Anal. 63 (2005), e1073–e1080.Google Scholar

  • [22]

    Yang, J.: Oscillation criteria for certain third-order variable delay functional dynamic equations on time scales, Appl. Math. Comput. 43 (2013), 445–466.Google Scholar

About the article


Received: 2013-06-04

Accepted: 2014-01-09

Published Online: 2016-08-26

Published in Print: 2016-06-01


Citation Information: Mathematica Slovaca, Volume 66, Issue 3, Pages 627–650, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2015-0166.

Export Citation

© 2016 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in