[1]

Aizpuru, A.—Pérez-Fernandez, J.: *Characterizations of series in Banach spaces*, Acta Math. Univ. Comenian. **2** (1999), 337–344.Google Scholar

[2]

Aizpuru, A.—Pérez-Fernandez, J.: *Spaces of S-bounded multiplier convergent series*, Acta Math. Hungar. **87** (2000), 135–146.Google Scholar

[3]

Diestel, J.—Jarchow, J.—Tonge, A.: *Absolutely Summing Operators*, Cambridge University Press, Cambridge, 1995.Google Scholar

[4]

Dunford, N.—Schwartz, J.: *Linear Operators I*, Interscience, New York, 1958.Google Scholar

[5]

Edwards, D. A.: *On the continuity properties of functions satisfying a condition of Sirvant*, Quart. J. Math. Oxford (2) **8** (1957), 58–67.Google Scholar

[6]

Hille, E.—Phillips, P.: *Functional Analysis and Semigroups*, Amer. Math. Soc., Providence, RI, 1957.Google Scholar

[7]

Jarchow, J.: *Locally Convex Spaces*, Tuebner, Stuttgart, 1981.Google Scholar

[8]

Mohsen, A.: *Weak-norm sequentially continuous operators*, Math. Slovaca **50** (2000), 357–363.Google Scholar

[9]

Pérez-Fernandez, J.—Benítez-Trujillo, F.—Aizpuru, A.: *Characterizations of completeness of normed spaces through weakly unconditionally Cauchy series*, Czechoslovak Math. J. **50(125)** (2000), 889–896.Google Scholar

[10]

Robertson, A.: *Unconditional convergence and the Vitali-Hahn-Saks theorem*, Bull. Soc. Math. France Supp. Mem. **31-32** (1972), 335–341.Google Scholar

[11]

Robertson, A.: *On Unconditional Convergence in Topological Vector Spaces*, Proc. Roy. Soc. Edinburgh **68** (1969), 145–157.Google Scholar

[12]

Swartz, C.: *Introduction to Functional Analysis*, Marcel Dekker, New York, 1994.Google Scholar

[13]

Swartz, C.: *Multiplier Convergent Series*, World Sci. Publ., Singapore, 2009.Google Scholar

[14]

Treves, F.: *Topological Vector Spaces, Distributions and Kernels*, Academic Press, New York, 1967.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.