[1]

Bai, Z. F.—Du, S. P.: *Multiplicative Lie isomorphism between prime rings*, Comm. Algebra **36** (2008), 1626–1633.Google Scholar

[2]

Bai, Z. F.—Du, S. P.: *Multiplicative *-Lie isomorphism between factors*, J. Math. Anal. Appl. **346** (2008), 327–335.Google Scholar

[3]

Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: *On Hersteins Lie map conjecture (I)*, Trans. Amer. Math. Soc. **353** (2001), 4235–4260.Google Scholar

[4]

Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: *On Hersteins Lie map conjecture (II)*, J. Algebra **238** (2001), 239–264.Google Scholar

[5]

Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: *On Hersteins Lie map conjecture (III)*, J. Algebra **238** (2002), 59–94.Google Scholar

[6]

Brešar, M.: *Jordan mappings of semiprime rings*, J. Algebra **127** (1989), 218–228.Google Scholar

[7]

Brešar, M.—Foner, A.: *On ring with involution equipped with some new product*, Publ. Math. Debrecen **57** (2000), 121–134.Google Scholar

[8]

Cui, J.—Li, C. K.: *Maps preserving product XY – Y X*^{*} on factor von Neumann algebras, Linear Algebra Appl. **431** (2009), 833–842.Google Scholar

[9]

Hakeda, J.: *Additivity of Jordan *-maps on AW*^{*}-algebras, Proc. Amer. Math. Soc. **96** (1986), 413–420.Google Scholar

[10]

Herstein, I. N.: *Jordan homomorphisms*, Trans. Amer. Math. Soc. **81** (1956), 331–341.Google Scholar

[11]

Jacobson, N.—Rickart, C. E.: *Jordan homomorphism of rings*, Trans. Amer. Math. Soc. **69** (1950), 479–502.Google Scholar

[12]

Ji, P.—Liu, Z.: *Additivity of Jordan maps on standard Jordan operator algebras*, Linear Algebra Appl. **430** (2009), 335–343.Google Scholar

[13]

Kadison, R. V.: *Isometries of operator algebras*, Ann. of Math. **54** (1951), 325–338.Google Scholar

[14]

Li, C.—Lu, F.—Fang, X.: *Nonlinear mappings preserving product XY + YX*^{*} on factor von Neumann algebras, Linear Algebra Appl. **438** (2013), 2339–2345.Google Scholar

[15]

Lu, F.: *Additivity of Jordan maps on standard operator algebras*, Linear Algebra Appl. **357** (2002), 123–131.Google Scholar

[16]

Lu, F.: *Jordan maps on associative algebras*, Comm. Algebra **31** (2003), 2273–2286.Google Scholar

[17]

Lu, F.: *Jordan triple maps*, Linear Algebra Appl. **375** (2003), 311–317.Google Scholar

[18]

Marcoux, L. W.: *Lie isomorphism of nest algebras*, J. Funct. Anal. **164** (1999), 163–180.Google Scholar

[19]

Molnár, L.: *A condition for a subspace of B(H) to be an ideal*, Linear Algebra Appl. **235** (1996), 229–234.Google Scholar

[20]

Molnár, L.: *On isomorphisms of standard operator algebras*, Studia Math. **142** (2000), 295–302.Google Scholar

[21]

Martindale, W. S.: *When are multiplicative mappings additive?* Proc. Amer. Math. Soc. **21** (1969), 695–698.Google Scholar

[22]

Mires, C. R.: *Lie isomorphisms of operator algebras*, Pacific J. Math. **38** (1971), 717–735.Google Scholar

[23]

Mires, C. R.: *Lie isomorphisms of factors*, Trans. Amer. Math. Soc. **147** (1970), 5–63.Google Scholar

[24]

Qi, X.—Hou, J.: *Additivity of Lie multiplicative maps on triangular algebras*, Linear and Multilinear Algebra **59** (2011), 391–397.Google Scholar

[25]

Šemrl, P.: *Quadratic functionals and Jordan *-derivations*, Studia Math. **97** (1991), 157–165.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.