Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia


IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2018: 0.29

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 67, Issue 1

Issues

Additivity of maps preserving products AP ± PA* on C*-algebras

Ali Taghavi
  • Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P. O. Box 47416-1468, Babolsar Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vahid Darvish
  • Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P. O. Box 47416-1468, Babolsar Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hamid Rohi
  • Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P. O. Box 47416-1468, Babolsar Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-02-28 | DOI: https://doi.org/10.1515/ms-2016-0260

Abstract

Let 𝒜 and ℬ be two prime C*-algebras. In this paper, we investigate the additivity of map Φ from 𝒜 onto ℬ that are bijective unital and satisfies Φ(AP+λPA)=Φ(A)Φ(P)+λΦ(P)Φ(A), for all A ∊ 𝒜 and P ∊ {P1, I𝒜P1} where P1 is a nontrivial projection in 𝒜 and λ∊ {−1, +1}. Then, Φ is *-additive.

MSC 2010: 47B48; 46L10

Keywords: new product; additive; prime C*-algebras

References

  • [1]

    Bai, Z. F.—Du, S. P.: Multiplicative Lie isomorphism between prime rings, Comm. Algebra 36 (2008), 1626–1633.Google Scholar

  • [2]

    Bai, Z. F.—Du, S. P.: Multiplicative *-Lie isomorphism between factors, J. Math. Anal. Appl. 346 (2008), 327–335.Google Scholar

  • [3]

    Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: On Hersteins Lie map conjecture (I), Trans. Amer. Math. Soc. 353 (2001), 4235–4260.Google Scholar

  • [4]

    Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: On Hersteins Lie map conjecture (II), J. Algebra 238 (2001), 239–264.Google Scholar

  • [5]

    Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: On Hersteins Lie map conjecture (III), J. Algebra 238 (2002), 59–94.Google Scholar

  • [6]

    Brešar, M.: Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218–228.Google Scholar

  • [7]

    Brešar, M.—Foner, A.: On ring with involution equipped with some new product, Publ. Math. Debrecen 57 (2000), 121–134.Google Scholar

  • [8]

    Cui, J.—Li, C. K.: Maps preserving product XY – Y X* on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), 833–842.Google Scholar

  • [9]

    Hakeda, J.: Additivity of Jordan *-maps on AW*-algebras, Proc. Amer. Math. Soc. 96 (1986), 413–420.Google Scholar

  • [10]

    Herstein, I. N.: Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331–341.Google Scholar

  • [11]

    Jacobson, N.—Rickart, C. E.: Jordan homomorphism of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502.Google Scholar

  • [12]

    Ji, P.—Liu, Z.: Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl. 430 (2009), 335–343.Google Scholar

  • [13]

    Kadison, R. V.: Isometries of operator algebras, Ann. of Math. 54 (1951), 325–338.Google Scholar

  • [14]

    Li, C.—Lu, F.—Fang, X.: Nonlinear mappings preserving product XY + YX* on factor von Neumann algebras, Linear Algebra Appl. 438 (2013), 2339–2345.Google Scholar

  • [15]

    Lu, F.: Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123–131.Google Scholar

  • [16]

    Lu, F.: Jordan maps on associative algebras, Comm. Algebra 31 (2003), 2273–2286.Google Scholar

  • [17]

    Lu, F.: Jordan triple maps, Linear Algebra Appl. 375 (2003), 311–317.Google Scholar

  • [18]

    Marcoux, L. W.: Lie isomorphism of nest algebras, J. Funct. Anal. 164 (1999), 163–180.Google Scholar

  • [19]

    Molnár, L.: A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229–234.Google Scholar

  • [20]

    Molnár, L.: On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295–302.Google Scholar

  • [21]

    Martindale, W. S.: When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21 (1969), 695–698.Google Scholar

  • [22]

    Mires, C. R.: Lie isomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717–735.Google Scholar

  • [23]

    Mires, C. R.: Lie isomorphisms of factors, Trans. Amer. Math. Soc. 147 (1970), 5–63.Google Scholar

  • [24]

    Qi, X.—Hou, J.: Additivity of Lie multiplicative maps on triangular algebras, Linear and Multilinear Algebra 59 (2011), 391–397.Google Scholar

  • [25]

    Šemrl, P.: Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157–165.Google Scholar

About the article


Received: 2014-06-07

Accepted: 2014-10-28

Published Online: 2017-02-28

Published in Print: 2017-02-01


Citation Information: Mathematica Slovaca, Volume 67, Issue 1, Pages 213–220, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2016-0260.

Export Citation

© 2017 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in