## Abstract

In this paper, we study the zero-divisor graphs of a subclass of dismantlable lattices. These graphs are characterized in terms of the non-ancestor graphs of rooted trees.

Show Summary Details# Zero-divisor graphs of lower dismantlable lattices I

## Abstract

## References

## About the article

More options …# Mathematica Slovaca

More options …

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year

IMPACT FACTOR 2017: 0.314

5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339

Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

- Online
- ISSN
- 1337-2211

Avinash Patil / B. N. Waphare / Vinayak Joshi / Hossein Y. Pourali

30,00 € / $42.00 / £23.00

Get Access to Full TextIn this paper, we study the zero-divisor graphs of a subclass of dismantlable lattices. These graphs are characterized in terms of the non-ancestor graphs of rooted trees.

MSC 2010: Primary 05C25; Secondary 05C75

Keywords: dismantlable lattice; adjunct element; adjunct representation; zero-divisor graph; cover graph; incomparability graph

*Dedicated to Professor N. K. Thakare on his 77 ^{th} birthday*

- [1]
Alizadeh, M.—Das, A. K.—Maimani, H. R.—Pournaki, M. R.—Yassemi, S.:

*On the diameter and girth of zero-divisor graphs of posets*, Discrete Appl. Math.**160**(2012), 1319–1324.Google Scholar - [2]
Anderson, D. F.—Livingston, P. S.:

*The zero-divisor graph of a commutative ring*, J. Algebra,**217**(1999), 434–447.Web of ScienceGoogle Scholar - [3]
Beck I.:

*Colouring of a commutative ring*, J. Algebra**116**(1988), 208–226.Google Scholar - [4]
Grillet, P. A.—Varlet, J. C.:

*Complementedness conditions in lattices*, Bull. Soc. Roy. Sci. Liège**36**(1967), 628–642.Google Scholar - [5]
Halaš, R.—Jukl, M.:

*On Beck’s colouring of posets*, Discrete Math.**309**(2009), 4584–4589.Google Scholar - [6]
Halaš, R.—Länger, H.:

*The zero divisor graph of a qoset*, Order**27**(2010), 343–351.Google Scholar - [7]
Joshi, V. V.:

*On forbidden configuration of 0-distributive lattices*, Math. Bohem.**134**(2009), 59–65.Google Scholar - [8]
Joshi, V. V.:

*Zero divisor graph of a poset with respect to an ideal*, Order**29**(2012), 499–506.Web of ScienceGoogle Scholar - [9]
Joshi, V. V.—Khiste, A. U.:

*On the zero divisor graph of a Boolean poset*, Math. Slovaca**64**(2014), 511–519.Google Scholar - [10]
Joshi, V. V.—Waphare, B. N.:

*Characterizations of 0-distributive posets*. Math. Bohem.**130**(2005), 73–80.Google Scholar - [11]
Joshi, V. V.—Waphare, B. N.—Pourali, H. Y.:

*Zero divisor graphs of lattices and primal ideals*, Asian-Eur. J. Math.**5**(2012), 1250037.Google Scholar - [12]
Joshi, V. V.—Waphare, B. N.—Pourali, H. Y.:

*On generalized zero divisor graph of a poset*, Discrete Appl. Math.**161**(2013), 1490–1495.Google Scholar - [13]
Kelly, D.—Rival, I.:

*Crowns, fences, and dismantlable lattices*, Canad. J. Math.**26**(1974), 1257–1271.Google Scholar - [14]
LaGrange, J. D.:

*Complemented zero divisor graphs and Boolean rings*, J. Algebra**315**(2007), 600-611.Web of ScienceGoogle Scholar - [15]
LaGrange, J. D.:

*On realizing zero divisor graphs*, Comm. Algebra**36**(2008), 4509–4520.Web of ScienceGoogle Scholar - [16]
Lu, D.—Wu, T.:

*The zero divisor graphs of posets and an application to semigroups*, Graphs Combin.**26**(2010), 793–804.Google Scholar - [17]
Nimbhorkar, S. K.—Wasadikar, M. P.—DeMeyer, L.:

*Coloring of semilattices*, Ars Combin.**84**(2007), 97–104.Google Scholar - [18]
Rival, I.:

*Lattices with doubly irreducible elements*, Canad. Math. Bull.**17**(1974), 91–95.Google Scholar - [19]
Survase, P. A.:

*A Study of graphs associated with lattices and related structures*, Ph. D. Thesis submitted to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (MS) 2013.Google Scholar - [20]
Thakare, N. K.—Pawar, M. M.—Waphare, B. N.:

*A structure theorem for dismantlable lattices and enumeration*Period. Math. Hungar.**45**(2002), 147–160.Google Scholar - [21]
West, D. B.:

*Introduction to Graph Theory*, Second Edition, Prentice-Hall of India, New Delhi, 2002.Google Scholar

**Received**: 2014-10-27

**Accepted**: 2015-05-07

**Published Online**: 2017-04-28

**Published in Print**: 2017-04-25

**Citation Information: **Mathematica Slovaca, Volume 67, Issue 2, Pages 285–296, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2016-0266.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.