## Abstract

Let {*n _{k}*} be a sequence of non-zero real numbers. We prove that the law of the iterated logarithm for discrepancies of the sequence {

*n*} is permutational invariant if |

_{k}x*n*

_{k}+1/

*n*| → ∞ is satisfied.

_{k}Show Summary Details# On permutational invariance of the metric discrepancy results

## Abstract

## References

## About the article

More options …# Mathematica Slovaca

More options …

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year

IMPACT FACTOR 2017: 0.314

5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339

Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

- Online
- ISSN
- 1337-2211

Katusi Fukuyama / Yutaro Noda

30,00 € / $42.00 / £23.00

Get Access to Full TextLet {*n _{k}*} be a sequence of non-zero real numbers. We prove that the law of the iterated logarithm for discrepancies of the sequence {

Keywords: discrepancy; metric result; lacunary sequence

The first author is supported by KAKENHI 24340017 and 24340020.

- [1]
Aistleitner, C.—Berkes, I.—Tichy, R.:

*Lacunary Sequences and Permutations*. Dependence in Probability, Analysis and Number Theory, A volume in memory of Walter Philipp, (Eds. I. Berkes, R. Bradley, H. Dehling, M. Peligrad, and R. Tichy), Kendrick press, 2010, pp. 35–49.Google Scholar - [2]
Aistleitner, C.—Berkes, I.—Tichy, R.:

*On the asymptotic behaviour of weakly lacunary series*, Proc. Amer. Math. Soc.**139**(2011), 2505–2517.Google Scholar - [3]
Aistleitner, C.—Berkes, I.—Tichy, R.:

*On the law of the iterated logarithm for permuted lacunary sequences*, Proc. Steklov Inst. Math.**276**(2012), 3–20.Web of ScienceGoogle Scholar - [4]
Berkes, I.:

*On Strassen’s version of the log log law for multiplicative systems*, Studia Sci. Math. Hungar.**8**(1973), 425–431.Google Scholar - [5]
Dhompongsa, S.:

*Almost sure invariance principles for the empirical process of lacunary sequences*, Acta Math. Hungar.**49**(1987), 83–102.Google Scholar - [6]
Erdös, P.:

*Problems and results on diophantine approximations*, Compos. Math.**16**(1964), 52–65.Google Scholar - [7]
Fukuyama, K.:

*The law of the iterated logarithm for discrepancies of*, Acta Math. Hungar.*θ*^{n}x**118**(2008), 155–170.Google Scholar - [8]
Fukuyama, K.:

*The law of the iterated logarithm for the discrepancies of a permutation of n*, Acta Math. Hungar._{k}x**123**(2009), 121–125.Google Scholar - [9]
Fukuyama, K.:

*A Central Limit Theorem and a Metric Discrepancy Result for Sequence with Bounded Gaps*. Dependence in Probability, Analysis and Number Theory, A volume in memory of Walter Philipp, (Eds. I. Berkes, R. Bradley, H. Dehling, M. Peligrad, and R. Tichy), Kendrick press, 2010, pp. 233–246.Google Scholar - [10]
Fukuyama, K.:

*Metric discrepancy results for alternating geometric progressions*, Monatsh. Math.**171**(2013), 33–63.Web of ScienceGoogle Scholar - [11]
Fukuyama, K.:

*A metric discrepancy result for the sequence of powers of minus two*, Indag. Math. (NS)**25**(2014), 487–504.Web of ScienceCrossrefGoogle Scholar - [12]
Fukuyama, K.—Mitsuhata, Y.:

*Bounded law of the iterated logarithm for discrepancies of permutations of lacunary sequences*, Summer School on the Theory of Uniform Distribution, RIMS Kôkyûroku Bessatsu,**B29**(2012), 65–88.Google Scholar - [13]
Kuipers, L.—Niederreiter, H.:

*Uniform Distribution of Sequences*, Wiley-Interscience, New York, 1974; Dover, New York, 2006.Google Scholar - [14]
Philipp, W.:

*Limit theorems for lacunary series and uniform distribution mod 1*, Acta Arith.**26**(1975), 241–251.Google Scholar - [15]
Philipp, W.:

*A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables*, Ann. Probab.**5**(1977), 319–350.Google Scholar - [16]
Takahashi, S.:

*An asymptotic property of a gap sequence*, Proc. Japan Acad.**38**(1962), 101–104.Google Scholar

**Received**: 2014-10-22

**Accepted**: 2015-05-27

**Published Online**: 2017-04-28

**Published in Print**: 2017-04-25

**Citation Information: **Mathematica Slovaca, Volume 67, Issue 2, Pages 349–354, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2016-0271.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.