[1]

Barvínek, J.: *Quantum Entropy and its Preservation*, Bachelor thesis, CVUT, 2013 (In Czech).Google Scholar

[2]

Cassinelli, G.—De Vito, E.—Levrero, A.—Lahti, P.: *Symmetry groups in quantum mechanics and the theorem of Wigner on the symmetry transformations*, Rev. Math. Phys. **8** (1997), 921–941.Google Scholar

[3]

Emch, G.: *Algebraic Methods in Statistical Mechanics and Quantum Field Theory*, Dover Publishing, 1972.Google Scholar

[4]

Gehér, P.: *An elementary proof for the non-bijective version of Wigner’s theorem*, Phys. Lett. A **387** (2014), 2054–2057.Web of ScienceGoogle Scholar

[5]

Hamhalter, J.: *Quantum Measure Theory*, Kluwer Publishers, Dordrecht, Boston, London, 2003.Google Scholar

[6]

Hanche-Olsen, H.—Størmer, E.: *Jordan Operator Algebras*, Pitman, 1984.Google Scholar

[7]

Herstein, I. N.: *Jordan homomorphisms*, Trans. Amer. Math. Soc. **81** (1956), 331–341.Google Scholar

[8]

Hou, J.: *Rank-preserving linear maps on B(K)*, Sci. China Ser. A **32** (1989), 929–940.Google Scholar

[9]

Jacobson, N.—Rickart, C.: *Jordan homomorphisms of rings*, Trans. Amer. Math. Soc. **69** (1950), 479–502.Google Scholar

[10]

Kadison, R. V.: *Isometries of operator algebras*, Ann. of Math. **54** (1951), 325–338.Google Scholar

[11]

Kadison, R. V.—Ringrose, J. R.: *Fundamentals of the Theory of Operator Algebras* American Mathematical Society, Vol. I, II, III, IV, 1994.Google Scholar

[12]

Molnar, L.: *Wigner’s unitary-antiunitary theorem via Herstein theorem on Jordan homomorphisms*, J. Nat. Geom. **10** (1996), 137–148.Google Scholar

[13]

Molnar, L.: *Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces*. Springer, 2007.Google Scholar

[14]

Molnar, L.: *Maps on states preserving the relative entropy*. J. Math. Phys. **49** (2008), 0321114.Web of ScienceGoogle Scholar

[15]

Molnar, L.—Szokol, P.: *Maps on states preserving the relative entropy II*., Linear Algebra Appl. **432** (2010), 3343–3350.Google Scholar

[16]

Nielsen, M. A.—Chuang, I. J.: *Quantum Computation and Quantum Information*, Cambridge University Press, 2001.Google Scholar

[17]

Palmer, T. W.: *Banch algebras and the general theory of *-algebras, I, II*, University Press, Cambridge, 1994.Google Scholar

[18]

Ohya, M.—Petz, D.: *Quantum Entropy and Its Use*. Texts and Monographs in Physics, Springer Verlag, 1993.Google Scholar

[19]

Petz, D.: *Quantum Information Theory and Quantum Statistics*, Springer Verlag, Berlin, Heidelberg, 2008.Google Scholar

[20]

Størmer, E.: *On the Jordan structure of C*-algebras*, Trans. Amer. Math. Soc. **120** (1965), 438–447.Google Scholar

[21]

Størmer, E.: *Positive Linear Maps of Operator Algebras*, Springer, 2013.Google Scholar

[22]

Simon, R.—Mukunda, N.—Chaturvedi, S.—Srinavasan, V.: *Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics*, Phys. Lett. A **372** (2008), 6847–6852.Web of ScienceGoogle Scholar

[23]

Simon, R.—Mukunda, N.—Chaturvedi, S.—Srinavasan, V.—Hamhalter, J.: *Comment on: Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics [Phys. Lett. A 372 (2008), 6847]*, Phys. Lett. A **378** (2014), 2332–2335.Google Scholar

[24]

Weinberger, S.: *The Quantum Theory of Fields*, Cambridge, USA, 1995.Google Scholar

[25]

Wigner, E. P.: *Group Theory and Its Applications to the Quantum Theory of Atomic Spectra*, Academic Press Inc., New York, 1959.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.