[1]

Bose, S.: *Quantum communication through an unmodulated spin chain*, Phys. Rev. Lett. **91** (2003), 207901.CrossrefGoogle Scholar

[2]

Bulirsch, R.—Stoer, J.: *Introduction to Numerical Analysis, 2ed*., Springer, 1993.Google Scholar

[3]

Cao, Y.—Papageorgiou, A.—Petras, I.—Traub, J.—Kais, S.: *Quantum algorithm and circuit design solving the Poisson equation*, New J. Phys. **15** (2013), 013021.Google Scholar

[4]

Cheney, E. W.—Light, W. A.: *A Course in Approximation Theory*. In: Grad. Stud. Math., American Mathematical Society, 2000.Google Scholar

[5]

Davis P.: *Interpolation and Approximation*, Dover Publications Inc., 1975.Google Scholar

[6]

Háková, L.—Hrivnák, J.—Patera, J.: *Six types of E-functions of the Lie groups O(5) and G(2)*, J. Phys. A: Math. Theor. **45** (2012), 125201; arXiv:1202.5031.CrossrefGoogle Scholar

[7]

Heckman, G. J.—Opdam, E. M.: *Root systems and hypergeometric functions. I*, Compos. Math. **64** (1987), 329–352.Google Scholar

[8]

Hrivnák, J.—Patera, J.: *Two-dimensional symmetric and antisymmetric generalizations of exponential and cosine functions*, J. Math. Phys. **51** (2010), 023515; arXiv:0911.4209.CrossrefGoogle Scholar

[9]

Hrivnák, J.—Patera, J.—Pošta, S.: *Three-variable exponential functions of the alternating group*, J. Phys. A: Math. Theor. **45** (2012), 045201–045210.CrossrefGoogle Scholar

[10]

Hrivnák, J.—Motlochová, L.—Patera, J.: *Two-dimensional symmetric and antisymmetric generalizations of sine functions*, J. Math. Phys, **51** (2010), 073509; arXiv:0912.0241.CrossrefGoogle Scholar

[11]

Hrivnák, J.—Walton, M. A.: *Discretized Weyl-orbit functions: modified multiplication and Galois symmetry*, arXiv:1412.6450.Google Scholar

[12]

Klimyk, A.—Patera, J.: *(Anti)symmetric multivariate exponential functions and corresponding Fourier transforms*, J. Phys. A: Math. Theor. **40** (2007), 10473–10489.Web of ScienceCrossrefGoogle Scholar

[13]

Klimyk, A. U.—Patera, J.: *Alternating Group and Multivariate Exponential Functions*. In: Groups and Symmetries, From Neolithic Scots to John McKay, (J. Harnad and P. Winternitz, eds.), AMS-CRM Proceedings and Lectures Notes Series, **47**, pp. 233–246; arXiv:0907.0601.Google Scholar

[14]

Klimyk, A.—Patera, J.: *(Anti)symmetric multivariate trigonometric functions and corresponding Fourier transforms*, J. Math. Phys. **48** (2007), 093504.CrossrefWeb of ScienceGoogle Scholar

[15]

Klimyk, A.—Patera, J.: *Alternating multivariate trigonometric functions and corresponding Fourier transforms*, J. Phys. A: Math. Theor. **41** (2008), 145205.CrossrefWeb of ScienceGoogle Scholar

[16]

Minc, H.: *Permanents*, Addison-Wesley, New York 1978.Google Scholar

[17]

Moody, R. V.—Motlochová, L.—Patera, J.: *New families of Weyl group orbit functions*, arXiv:1202.4415.Google Scholar

[18]

Nesterenko, M.—Patera, J.: *Three dimensional C-, S-, and E-transforms*, J. Phys. A: Math. Theor., **41** (2008), 475205; arXiv:0805.3731.CrossrefGoogle Scholar

[19]

Patera, J.: *Compact simple Lie groups and theirs C-, S-, and E-transforms*, SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) **1** (2005), 025, 6 pages, math-ph/0512029.Google Scholar

[20]

Patera, J.—Zaratsyan, A.: *Discrete and continuous cosine transform generalized to Lie groups SU(3) and G(2)*, J. Math. Phys. **46** (2005), 113506.CrossrefGoogle Scholar

[21]

Patera, J.—Zaratsyan, A.: *Discrete and continuous cosine transform generalized to the Lie groups SU(2) × SU(2) and O(5)*, J. Math. Phys. **46** (2005), 053514.CrossrefGoogle Scholar

[22]

Yu, H.—Andersson, S.—Nyman, G.: *A generalized discrete variable representation approach to interpolating or fitting potential energy surfaces*, Chemical Physics Letters **321** (2000), 275–280.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.