[1]

Arnoux, P.—Levitt, G.: *Sur l’unique ergodicité des 1-formes fermées singulières*, Invent. Math. **84** (1986), 141–156.CrossrefGoogle Scholar

[2]

Babalic, E. M.—Lazaroiu, C. I.: *Foliated eight-manifolds for M-theory compactification*, Journal of High Energy Physics **1** (2015), 140.CrossrefGoogle Scholar

[3]

Babalic, E. M.—Lazaroiu, C. I.: *Singular foliations for M-theory compactification*, Journal of High Energy Physics **3** (2015), 116.CrossrefGoogle Scholar

[4]

Chen, B-L.—LeFloch, PH. G.: *Local foliations and optimal regularity of Einstein spacetimes*, J. Geom. Phys. **59** (2009), 913–941.CrossrefWeb of ScienceGoogle Scholar

[5]

Dimca, A.—Papadima, S.—Suciu, A.: *Quasi-Kähler groups, 3-manifold groups, and formality*, Math. Z. **268** (2011), 169–186.CrossrefGoogle Scholar

[6]

Gelbukh, I.: *Co-rank and Betti number of a group*, Czechoslovak Math. J. **65** (2015), 565–567.Web of ScienceGoogle Scholar

[7]

Gelbukh, I.: *Presence of minimal components in a Morse form foliation*, Differ. Geom. Appl. **22** (2005), 189–198.CrossrefGoogle Scholar

[8]

Gelbukh, I.: *Number of minimal components and homologically independent compact leaves for a Morse form foliation*, Stud. Sci. Math. Hung. **46** (2009), 547–557.Web of ScienceGoogle Scholar

[9]

Gelbukh, I.: *On the structure of a Morse form foliation*, Czechoslovak Math. J. **59** (2009), 207–220.Web of ScienceGoogle Scholar

[10]

Gelbukh, I.: *Close cohomologous Morse forms with compact leaves*, Czechoslovak Math. J. **63** (2013), 515–528.Web of ScienceGoogle Scholar

[11]

Gilmer, P.: *Heegaard genus, cut number, weak p-congruence, and quantum invariants*, J. Knot Theory Ramifications **18** (2009), 1359–1368.Google Scholar

[12]

Harvey, S.: *On the cut number of a 3-manifold*, Geom. Topol. **6** (2002), 409–424.CrossrefGoogle Scholar

[13]

Imanishi, H.: *On codimension one foliations defined by closed one forms with singularities*, J. Math. Kyoto Univ. **19** (1979), 285–291.CrossrefGoogle Scholar

[14]

Jaco, W.: *Heegaard splittings and splitting homomorphisms*, Trans. Amer. Math. Soc. **146** (1969), 365–375.CrossrefGoogle Scholar

[15]

Jaco, W.: *Geometric realizations for free quotients*, J. Austral. Math. Soc. **14** (1972), 411–418.CrossrefGoogle Scholar

[16]

Katz, M.—Rudyak, Y.—Sabourau, S.: *Systoles of 2-complexes, Reeb graph, and Grushko decomposition*, Int. Math. Res. Not. IMRN **2006** (2006), 1–30.Google Scholar

[17]

Leininger, C. J.—Reid, A. W.: *The co-rank conjecture for 3-manifold groups*, Algebraic and Geometric Topology **2** (2002), 37–50.CrossrefGoogle Scholar

[18]

Levitt, G.: *1-formes fermées singulières et groupe fondamental*, Invent. Math. **88** (1987), 635–667.CrossrefGoogle Scholar

[19]

Levitt, G.: *Groupe fondamental de l’espace des feuilles dans les feuilletages sans holonomie*, J. Diff. Geom. **31** (1990), 711–761.CrossrefGoogle Scholar

[20]

Lyndon, R. C.: *The equation a*^{2}b^{2}=c^{2} in free groups, Mich. Math. J. **6** (1959), 89–95.Google Scholar

[21]

Lyndon, R. C.: *Dependence in groups*, Colloq. Math. **XIV** (1966), 275–283.Google Scholar

[22]

Lyndon, R. C.—Schupp, P. E.: *Combinatorial Group Theory*. Mathematics, Springer, Berlin, 2001.Google Scholar

[23]

Makanin, G. S.: *Equations in a free group*, Math. USSR Izvestiya **21** (1983), 483–546.Google Scholar

[24]

Mel’nikova, I. A.: *A test for non-compactness of the foliation of a Morse form*, Russ. Math. Surveys **50** (1995), 444–445.Google Scholar

[25]

Mel’nikova, I. A.: *Maximal isotropic subspaces of skew-symmetric bilinear mapping*, Mosc. Univ. Math. Bull. **54** (1999), 1–3.Google Scholar

[26]

Razborov, A. A.: *On systems of equations in a free group*, Math. USSR Izvestiya **25** (1985), 115–162.Google Scholar

[27]

Sikora, A.: *Cut numbers of 3-manifolds*, Trans. Amer. Math. Soc. **357** (2005), 2007–2020.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.