[1]
Bravo, J. J.—Luca, F.: On a conjecture about repdigits in k-generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013), 623–639.Web of ScienceCrossrefGoogle Scholar
[2]
Dujella, A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566 (2004), 183–214.Google Scholar
[3]
Dujella, A.: Diophantine m-tuples, https://web.math.pmf.unizg.hr/duje/dtuples.html.
[4]
Evertse, J.-H.—Schmidt, W. M.—Schlickewei, H.-P.: Linear equations in variables which lie in a multipilicative group, Ann. of Math. 155 (2002), 807–836.Google Scholar
[5]
Evertse, J.-H.: An improvement of the quantitative Subspace theorem, Compos. Math. 101 (1996), 225–311.Google Scholar
[6]
Fuchs, C.: Polynomial-exponential equations and linear recurrences, Glas. Mat. 38 (2003), 233–252.Google Scholar
[7]
Fuchs, C.: Diophantine problems with linear recurrences via the Subspace theorem, Integers 5 (2005), A8.Google Scholar
[8]
Fuchs, C.: Polynomial-exponential equations involving multi-recurrences, Studia Sci. Math. Hungar. 46 (2009), 377–398.Google Scholar
[9]
Fuchs, C.—Luca, F.—Szalay, L.: Diophantine triples with values in binary recurrences, Ann. Sc. Norm. Super. Pisa Cl. Sc. 7 (2008), 579–608.Google Scholar
[10]
Fuchs, C.—Tichy, R. F.: Perfect powers in linear recurrence sequences, Acta Arith. 107 (2003), 9–25.Google Scholar
[11]
Gomez Ruiz, C. A.—Luca, F.: Tribonacci Diophantine quadruples, Glas. Mat. 50 (2015), 17–24.Google Scholar
[12]
Gomez Ruiz, C. A.—Luca, F.: Diophantine quadruples in the sequence of shifted Tribonacci numbers, Publ. Math. Debrecen 86 (2015), 473–491.Web of ScienceGoogle Scholar
[13]
Irmak, N.—Szalay, L.: Diophantine triples and reduced quadruples with the Lucas sequence of recurrence un = Aun−1 − un−2, Glas. Mat.49 (2014), 303–312.Google Scholar
[14]
Luca, F.—Szalay, L.: Fibonacci Diophantine Triples, Glas. Mat. 43 (2008), 253–264.Web of ScienceGoogle Scholar
[15]
Luca, F.—Szalay, L.: Lucas Diophantine Triples, Integers 9 (2009), 441–457.Google Scholar
[16]
Spickerman, W. R.: Binet’s formula for the Tribonacci numbers, Fibonacci Quart. 20 (1982), 118–120.Google Scholar
Comments (0)