Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

See all formats and pricing
More options …
Volume 67, Issue 4


Abundant semigroups with a *-normal idempotent

Yonglin Hou / Junying Guo / Xiaojiang Guo
Published Online: 2017-07-14 | DOI: https://doi.org/10.1515/ms-2017-0016


The notion of *-normal idempotents is introduced. The structure theorem for abundant semigroups with a *-normal idempotent is obtained. As its applications, we establish the construction theorem of naturally ordered abundant semigroups with a greatest idempotent.

MSC 2010: Primary 20M10; Secondary 06F05

Keywords: abundant semigroup; naturally ordered semigroup; *-unipotent semigroup; (ordered) partial semigroup


  • [1]

    Blyth, T. S.: On a class of Dubreul-Jacotin regular semigroups and a construction of Yamada, Proc. Roy. Soc. Edinburgh 77A (1977), 145–150.Google Scholar

  • [2]

    Blyth, T. S.: Dubreil-Jacotin inverse semigroups, Proc. Roy. Soc. Edinburgh 71A (1972/1973), 345–360.Google Scholar

  • [3]

    Blyth, T. S.—Almeida Santos, M. H.: On naturally ordered regular semigroups with biggest idempotents, Comm. Algebra 21 (1993), 1761–1771.CrossrefGoogle Scholar

  • [4]

    Blyth, T. S.—Mcfadden, R.: Naturally ordered regular semigroups with a greatest idempotent, Proc. Roy. Soc. Edinb. 91A (1981), 107–122.CrossrefGoogle Scholar

  • [5]

    Chen, H.: Construction of a kind of abundant semigroups, Math. Commun. 11 (2006), 165–171.Google Scholar

  • [6]

    El-Qallali, A.: On the construction of a class of abundant semigroups, Acta Math. Hung. 56 (1990), 77–91.CrossrefGoogle Scholar

  • [7]

    Fountain, J. B.: Adequate semigroups, Proc. Edinb. Math. Soc. 22 (1979), 113–125.CrossrefGoogle Scholar

  • [8]

    Fountain, J. B.: Abundant semigroups, Proc. London Math. Soc. (3)44 (1982), 103–129.CrossrefGoogle Scholar

  • [9]

    Guo, X. J.: The structure of abundant semigroups with a weak normal idempotent, Acta Math. Sinica 42 (1999), 683–690 (in Chinese).Google Scholar

  • [10]

    Guo, X. J.: Abundant semigroups with a multiplicative adequate transversal, Acta Math. Sinica (Engl. Ser.) 18 (2002), 229–244.CrossrefGoogle Scholar

  • [11]

    Guo, X. J.: Amenably Natural order abundant semigroups, Adv. Math. (China) 30 (2001), 156–164 (in Chinese).Google Scholar

  • [12]

    Guo, X. J.—Ren, C. C.—Shum, K. P.: On naturally ordered rpp semigroups with max-idempotents, Algebra Colloq. 22 (2015), 11–22.CrossrefGoogle Scholar

  • [13]

    Guo, X. J.—Shum, K. P.: Abundant semigroups with Q-adequate transversals and some of their special cases, Algebra Colloquium 14 (2007), 687–704.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    Guo, X. J.—Shum, K. P.: Naturally ordered abundant semigroups for which each idempotent has a greatest inverse, European J. Pure Appl. Math. 4 (2011), 210–220.Google Scholar

  • [15]

    Guo, X. J.—Xie, X. Y.: Naturally ordered abundant semigroups in which each idempotent has a greastest inverse, Comm. Algerbra 35 (2008), 2324–2339.CrossrefGoogle Scholar

  • [16]

    Guo, X. J.—Zhang, R. H.—Li, X. N.: Natural Dubreil-Jacotin abundant semigroups, J. Math. (China) 20 (2000), 329–334 (in Chinese).Google Scholar

  • [17]

    Howie, J. M.: An introduction to semigroup theory, Academic Press, London, 1976.Google Scholar

  • [18]

    Jing, F. J.: Abundant semigroups with a medial idempotent, Semigroup Forum 51 (1995), 247–261.CrossrefGoogle Scholar

  • [19]

    Lawson, M. V.: The natural partial orders on an abundant semigroup, Proc. Edinb. Math. Soc. 30 (1987), 169–186.CrossrefGoogle Scholar

About the article


This research is jointly supported by the National Natural Science Foundation of China (grant: 11361027, 11661042); the Natural Science Foundation of Jiangxi Province and the Science Foundation of the Education Department of Jiangxi Province, China.

Received: 2015-04-17

Accepted: 2016-04-27

Published Online: 2017-07-14

Published in Print: 2017-08-28

Citation Information: Mathematica Slovaca, Volume 67, Issue 4, Pages 863–874, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0016.

Export Citation

© 2017 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in