[1]

Abubaker, A.—Darus, M.: *Hankel determinant for a class analytic functions involving a generalized linear differential operator*, Int. J. Pure Appl. Math. **69** (2011), 429–435.Google Scholar

[2]

Aghalary, A.—Kulkarni, S. R.: *Certain properties of parabolic starlike and convex functions of order ρ*, Bull. Malaysian Math. Sci. Soc. (Ser. 2) **26** (2003), 153–162.Google Scholar

[3]

Deniz, E.—Orhan, H.—Srivastava, H. M.: *Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions*, Taiwanese J. Math. **15** (2011), 883–917.Google Scholar

[4]

Darus, M.—Fasisal, I.: *Hankel determinant for the class of K*, Journal of Quality Measurement and Analysis (JQMA), **6** (2010), 77–85.Google Scholar

[5]

Ehrenborg, R.: *The Hankel determinant of exponential polynomials*, Amer. Math. Monthly **107** (2000), 557–560.Google Scholar

[6]

Goodman, A. W.: *On uniformly convex functions*, Ann. Polon. Math. **56** (1991), 87–92.Google Scholar

[7]

Goodman, A. W.: *On uniformly starlike functions*, J. Math. Anal. Appl. **155** (1991), 364–370.Google Scholar

[8]

Grenander, U.—Szego, G.: *Toeplitz Forms and their Application*, Univ. of California Press, Berkeley and Los Angeles, 1958.Google Scholar

[9]

Janteng, A.—Halim, S. A.—Darus, M.: *Hankel determinant for starlike and convex functions*, Int. J. Math. Anal. **1(13)** (2007), 619-625.Google Scholar

[10]

Kanas, S.: *Alternative characterization of the class k-UCV and related classes of univalent functions*, Serdica Math. J. **25** (1999), 341–350.Google Scholar

[11]

Kanas, S.: *Techniques of the differential subordination for domains bounded by conic sections*, Internat. J. Math. Math. Sci. **38** (2003), 2389–2400.Google Scholar

[12]

Kanas, S.: *Differential subordination related to conic sections*, J. Math. Anal. Appl. **317** (2006), 650–658.Google Scholar

[13]

Kanas, S.: *Subordination for domains bounded by conic sections*, Bull. Belg. Math. Soc. Simon Stevin **15** (2008), 589–598.Google Scholar

[14]

Kanas, S.: *Norm of pre-Schwarzian derivative for the class of k-uniform convex and k-starlike functions*, Appl. Math. Comput **215** (2009), 2275–2282.Google Scholar

[15]

Kanas, S.—Srivastava, H. M.: *Linear operators associated with k-uniform convex functions*, Integral Transforms Spec. Function. **9** (2000), 121–132.Google Scholar

[16]

Kanas, S.—Wiśniowska, A.: *Conic regions and k-uniform convexity*, II, Zeszyty Nauk. Politech. Rzeszowskiej Mat. **22** (1998), 65–78.Google Scholar

[17]

Kanas, S.—Wiśniowska, A.: *Conic regions and k-uniform convexity*, J. Comput. Appl. Math. **105** (1999), 327–336.Google Scholar

[18]

Kanas, S.—Wiśniowska, A.: *Conic regions and k-starlike function*, Rev. Roumaine Math. Pures Appl. **45** (2000), 647–657.Google Scholar

[19]

Kanas, S.—Răducanu, D.: *Some class of analytic functions related to conic domains*, Math. Slovaca **64** (2014), 1183–1196.Web of ScienceGoogle Scholar

[20]

Keogh, F. R.—Merkes, E. P.: *A coefficient inequality for certain classes of analytic functions*, Proc. Amer. Math. Soc. **20** (1969), 8–12.Google Scholar

[21]

Layman, J. W.: *The Hankel transform and some of its properties*, J. Integer Seq. **4** (2001), 1–11.Google Scholar

[22]

Lecko, A.—Wiśniowska, A.: *Geometric properties of subclasses of starlike functions*, J. Comput. Appl. Math. **155** (2003), 383–387.Google Scholar

[23]

Libera, R. J.—Zlotkiewicz, E. J.: *Coefficient bounds for the inverse of a function with derivative in P*, Proc. Amer. Math. Soc. **87** (1983), 251–257.Google Scholar

[24]

Ma, W. C.—Minda, D.: *Uniformly convex functions*, Ann. Polon. Math. **57** (1992), 165–175.Google Scholar

[25]

Ma, W. C.—Minda, D.: *A unified treatment of some special classes of univalent functions*. In: Proceedings of the Conference on Complex Analysis (Tianjin, Peoples Republic of China; June 19–23, (1992)), (Z. Li, F. Ren, L. Yang and S. Zhang, eds.), International Press, Cambridge, Massachusetts, 1994, pp. 157–169.Google Scholar

[26]

Ma, W. C.—Minda, D.: *Uniformly convex functions, II*, Ann. Polon. Math. **58** (1993), 275–285.Google Scholar

[27]

Nezhmetdinov, I.: *Classes of uniformly convex and uniformly starlike functions as dual sets*, J. Math. Anal. Appl. **216** (1997), 40–47.Google Scholar

[28]

Nishiwaki, J.—Owa, S.: *Certain classes of analytic functions concerned with uniformly starlike and convex functions*, Appl. Math. Comput. **187** (2007), 350–355.Web of ScienceGoogle Scholar

[29]

Noonan, J. W. —Thomas, D. K.: *On the second Hankel derminant of areally mean p-valent functions*, Trans. Amer. Math. Soc. **223** (1976), 337–346.Google Scholar

[30]

Noor, K. I.: *Hankel determinant problem for the class of functions with bounded boundary rotation*, Rev. Roumaine Math. Pures Appl. **28** (1983), 731–739.Google Scholar

[31]

Pommerenke, CH.: *Univalent Functions*, Vandenhoeck and Ruprecht, Gottingen, 1975.Google Scholar

[32]

R⊘nning, F.: *Uniformly convex functions and a corresponding class of starlike functions*, Proc. Amer. Math. Soc. **118** (1993), 189–196.Google Scholar

[33]

Shams, S.—Kulkarni, S. R.—Jahangiri, J. M.: *Classes of uniformly starlike and convex functions*, Internat. J. Math. Math. Sci. **55** (2004), 2959–2961.Google Scholar

[34]

Sim, Y. J.—Kwon, O. S.—Cho, N. E.—Srivastava, H. M.: *Some classes of analytic functions associated with conic regions*, Taiwanese J. Math. **16**, 387–408.Google Scholar

[35]

Srivastava, H. M.—Mishra A. K.—Das, M. K.: *The Fekete-Szego problem for a subclass of close-to-convex functions*, Complex Variables Theory Appl. **44** (2001), 145–163.Google Scholar

[36]

Srivastava, H. M.—Owa, S.: *Current Topics in Analytic Function Theory*, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.Google Scholar

## Comments (0)