[1]
Adámek, J.—Herrlich, H.—Strecker, G. E.: Abstract and Concrete Categories, J. Wiley & Sons, New York, 1990.Google Scholar
[2]
Alsina, C.—Schweizer, B.—Sklar, A.: On the definition of a probabilistic normed space, Aequat. Math. 46 (1993), 91-98.Google Scholar
[3]
Bahrami, F.—Mohammadbaghban, M.: Probabilistic Lp spaces, J. Math. Anal. Appl. 402 (2013), 505-517.Google Scholar
[4]
Borzová-Molnárová, J.—Halčinová, L.—Hutník, O.: Probabilistic-valued decomposable set functions with respect to triangle functions, Inform. Sci. 295 (2015), 347–357.Web of ScienceGoogle Scholar
[5]
Bourbaki, N.: General Topology I, Addison-Wesley, Reading, MA, 1966.Google Scholar
[6]
Brock, P.: Probabilistic convergence spaces and generalized metric spaces, Int. J. Math. Math. Sci. 21 (1998), 439-452.Google Scholar
[7]
Cook, C. H.—Fischer, H. R.: Uniform convergence structures, Math. Ann. 173 (1967), 290-306.Google Scholar
[8]
Császár, Á.: λ-complete filter spaces, Acta Math. Hungar. 70 (1996), 75-87.CrossrefGoogle Scholar
[9]
Fischer, H. R.: Limesräume, Math. Ann. 137 (1959), 269-303.Google Scholar
[10]
Florescu, L. C: Probabilistic convergence structures, Aequat. Math. 38 (1989), 123-145.Google Scholar
[11]
Frank, M. J.: Probabilistic topological spaces, J. Math. Anal. Appl. 34 (1971), 67-81.Google Scholar
[12]
Fritsche, R.: Topologies for probabilistic metric spaces, Fund. Math. 72 (1971), 7-16.Google Scholar
[13]
Gähler, W.: Grundstrukturen der Analysis I, II, Birkhäuser, Basel and Stuttgart, 1978.Google Scholar
[14]
Halčinová, L.—Hutník, O.: An integral with respect to probabilistic-valued decomposable measures, Internat. J. Approx. Reason. 55 (2014), 1469-1484.Google Scholar
[15]
Hutník, O.—Mesiar, R.: On a certain class of submeasures based on triangular norms, Internat. J. Uncertain Fuzziness Knowledge-Based Systems 17 (2009), 297–316.Google Scholar
[16]
Jäger, G—Ahsanullah, T. M. G.: Probabilistic limit groups under a t-norm, Topology Proc. 44 (2014), 59-74.Google Scholar
[17]
Jäger, G.—Ahsanullah, T. M. G.: Probabilistic uniform convergence spaces redefined, Acta Math. Hungar. 146 (2015), 376-390.Google Scholar
[18]
Jäger, G.: A convergence theory for probabilistic metric spaces, Quest. Math. 3 (2015), 587–599.Google Scholar
[19]
Klement, E. P.—Mesiar, R.—Pap, E.: Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000.Google Scholar
[20]
Lipovan, O.: Submeasures with probabilistic structures, Math. Moravica 4 (2000), 59–65.Google Scholar
[21]
Lipovan, O.: A probabilistic generalization of integrability for positive functions, Novi Sad J. Math. 34 (2004), 53-60.Google Scholar
[22]
Menger, K.: Statistical metrics, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537.CrossrefGoogle Scholar
[23]
Nusser, H.: A generalization of probabilistic uniform spaces, Appl. Cat. Structures 10 (2002), 81–98.Google Scholar
[24]
Preuss, G.: Foundations of Topology: An Approach to Convenient Topology, Kluwer Academic Publishers, Dordrecht, 2002.Google Scholar
[25]
Richardson, G. D.—Kent, D. C: Probabilistic convergence spaces, J. Austral. Math. Soc. 61 (1996), 400-420.CrossrefGoogle Scholar
[26]
Richardson, G. D.: Convergence in probabilistic semimetric spaces, Rocky Mountain J. Math. 18 (1988), 617-634.Google Scholar
[27]
Schweizer, B.—Sklar, A.: Probabilistic Metric Spaces, North-Holland, New York, 1983.Google Scholar
[28]
Saminger, S.—Sempi, C: A primer on triangle functions I, Aequat. Math. 76 (2008), 201-240.CrossrefGoogle Scholar
[29]
Sencimen, C.—Pehlivan, S.: Strong ideal convergence in probabilistic metric spaces, Proc. Indian Acad. Sci. 119 (2009), 401–410.Google Scholar
[30]
Šerstnev, A. N.: On the notion of a random normed space, Dokl. Akad. Nauk SSSR 149 (1963), 280–283 (in Russian).Google Scholar
[31]
Sherwood, H.: On E-spaces and their relation to other classes of probabilistic metric spaces, J. London Math. Soc. 44 (1969), 441–448.Google Scholar
[32]
Sibley, D. A.: A metric for weak convergence of distribution functions, Rocky Mountain J. Math. 1 (1971), 427–430.Google Scholar
[33]
Tardiff, R. M.: Topologies for probabilistic metric spaces, Pacific J. Math. 65 (1976), 233–251.Google Scholar
[34]
Thorp, E.: Generalized topologies for statistical metric spaces, Fund. Math. 51 (1962), 9–12.Google Scholar
[35]
Wald, A.: On a statistical generalization of metric spaces, Proc. Nat. Acad. Sci. U. S. A. 29 (1943), 196–197.CrossrefGoogle Scholar
Comments (0)