Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia


IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2018: 0.29

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 67, Issue 6

Issues

A generalization of the exponential sampling series and its approximation properties

Carlo Bardaro / Loris Faina / Ilaria Mantellini
Published Online: 2017-11-30 | DOI: https://doi.org/10.1515/ms-2017-0064

Abstract

Here we introduce a generalization of the exponential sampling series of optical physics and establish pointwise and uniform convergence theorem, also in a quantitative form. Moreover we compare the error of approximation for Mellin band-limited functions using both classical and generalized exponential sampling series.

MSC 2010: Primary 42C15; 46E22; Secondary 94A20

Keywords: Mellin transform; Mellin band-limited functions; Mellin derivatives; generalized exponential sampling

References

  • [1]

    Angeloni, L.—Vinti, G.: A characterization of absolute continuity by means of Mellin integral operators, Z. Anal. Anwend. 34 (2015), 343–356.CrossrefGoogle Scholar

  • [2]

    Angeloni, L.—Vinti, G.: Convergence in variation and a characterization of the absolute continuity, Integral Transforms Spec. Funct. 26 (2015), 829–844.CrossrefWeb of ScienceGoogle Scholar

  • [3]

    Bardaro, C.—Butzer, P. L.—Mantellini, I.: The exponential sampling theorem of signal analysis and the reproducing kernel formula in the Mellin transform setting, Sampl. Theory Signal Image Process. 13 (2014), 35–66.Google Scholar

  • [4]

    Bardaro, C.—Butzer, P. L.—Mantellini, I.: The Mellin-Parseval formula and its interconnections with the exponential sampling theorem of optical physics, Integral Transforms Spec. Funct. 27 (2016), 17–29.Web of ScienceCrossrefGoogle Scholar

  • [5]

    Bardaro, C.—Butzer, P. L.—Mantellini, I.: The foundations of fractional calculus in the Mellin transform setting with applications, J. Fourier Anal. Appl. 21 (2015), 961–1017.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    Bardaro, C.—Butzer, P. L.—Mantellini, I.—Schmeisser, G.: On the Paley-Wiener theorem in the Mellin transform setting, J. Approx. Theory 207 (2016), 60–75.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    Bardaro, C.—Butzer, P. L.—Stens, R. L.—Vinti, G.: Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals, J. Math. Anal. Appl. 316 (2006), 269–306.CrossrefGoogle Scholar

  • [8]

    Bardaro, C.—Butzer, P. L.—Stens, R. L.—Vinti, G.: Prediction by samples from the past with error estimates covering discontinuous signals, IEEE Transactions on Information Theory 56 (2010), 614–633.CrossrefWeb of ScienceGoogle Scholar

  • [9]

    Bardaro, C.—Faina, L.—Mantellini, I.: Quantitative approximation properties for iterates of moment operator, Math. Model. Anal. 20 (2015), 261–272.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    Bardaro, C.—Mantellini, I.: On Mellin convolution operators: a direct approach to the asymptotic formulae, Integral Transforms Spec. Funct. 25 (2014), 182–195.CrossrefWeb of ScienceGoogle Scholar

  • [11]

    Bardaro, C.— Mantellini, I.: A note on the Voronovskaja theorem for Mellin-Fejer convolution operators, Appl. Math. Lett. 24 (2011), 2064–2067.CrossrefWeb of ScienceGoogle Scholar

  • [12]

    Bardaro, C.—Mantellini, I.: Asymptotic formulae for linear combinations of generalized sampling type operators, Z. Anal. Anwend. 32 (2013), 279–298.CrossrefGoogle Scholar

  • [13]

    Bertero, M.— Pike, E. R.: Exponential sampling method for Laplace and other dilationally invariant transforms I. Singular-system analysis. II. Examples in photon correction spectroscopy and Frauenhofer diffraction, Inverse Problems 7 (1991), 1–20; 21–41.CrossrefGoogle Scholar

  • [14]

    Butzer, P. L.—Jansche, S.: A direct approach to the Mellin transform, J. Fourier Anal. Appl. 3 (1997), 325–375.CrossrefGoogle Scholar

  • [15]

    Butzer, P. L.—Jansche, S.: The finite Mellin Transform, Mellin-Fourier series and the Mellin-Posson summation formula, Rend. Circ. Mat. Palermo, Ser. II, Suppl. Vol. 52 (1998), 55–81.Google Scholar

  • [16]

    Butzer, P. L.—Jansche, S.: The exponential sampling theorem of signal analysis, Atti Sem. Mat. Fis. Univ. Modena, Suppl. Vol. 46 (1998), 99–122, special issue dedicated to Professor Calogero Vinti.Google Scholar

  • [17]

    Butzer, P. L.—Jansche, S.: A self-contained approach to Mellin transform analysis for square integrable functions; applications, Integral Transforms Spec. Funct. 8 (1999), 175–198.CrossrefGoogle Scholar

  • [18]

    Butzer, P. L.— Stens, R. L.: Prediction of non-bandlimited signals in terms of splines of low degree, Math. Nachr. 132 (1987), 115–130.CrossrefGoogle Scholar

  • [19]

    Butzer, P. L.—Stens, R. L.: Linear prediction by samples from the past. In: Advances Topics in Shannon Sampling and Interpolation Theory (R. J. Marks II, ed.), Springer-Verlag, 1993, pp. 157–183.Google Scholar

  • [20]

    Casasent, D. (ed.): Optical Data Processing, Springer, Berlin, 1978, pp. 241–282.Google Scholar

  • [21]

    Gori, F.: Sampling in optics. In: Advances Topics in Shannon Sampling and Interpolation Theory (R. J. Marks II, ed.), Springer, New York, 1993, pp. 37–83.Google Scholar

  • [22]

    Mamedov, R. G.: The Mellin Transform and Approximation Theory, (in Russian), “Elm”, Baku, 1991.Google Scholar

  • [23]

    Ostrowsky, N.—Sornette, D.—Parker, P.—Pike, E. R.: Exponential sampling method for light scattering polydispersity analysis, Opt. Acta 28 (1994), 1059–1070.Google Scholar

About the article


Received: 2016-03-31

Accepted: 2017-02-23

Published Online: 2017-11-30

Published in Print: 2017-11-27


Citation Information: Mathematica Slovaca, Volume 67, Issue 6, Pages 1481–1496, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0064.

Export Citation

© 2017 Mathematical Institute Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Carlo Bardaro, Giada Bevignani, Ilaria Mantellini, and Marco Seracini
Constructive Mathematical Analysis, 2019
[2]
Carlo Bardaro, Ilaria Mantellini, and Gerhard Schmeisser
Results in Mathematics, 2019, Volume 74, Number 3
[3]
Lucian Coroianu and Sorin G. Gal
Mathematical Methods in the Applied Sciences, 2018

Comments (0)

Please log in or register to comment.
Log in