Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year

IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

See all formats and pricing
More options …
Volume 68, Issue 1


Big mapping class groups are not acylindrically hyperbolic

Juliette Bavard / Anthony Genevois
  • Department of Mathematics, Faculty of Sciences, University Aix-Marseille, 3 place Victor Hugo, 13331 Marseille, cedex 3, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-02-09 | DOI: https://doi.org/10.1515/ms-2017-0081


We give a criterion to prove that some groups are not acylindrically hyperbolic. As an application, we prove that the mapping class group of an infinite type surface is not acylindrically hyperbolic.

MSC 2010: Primary 20F65; Secondary 20F67

Keywords: mapping class groups; infinite type surfaces; acylindrically hyperbolic groups


  • [1]

    Aramayona, J.—Fossas, A.—Parlier, H.: Arc and curve graphs for infinite-type surfaces, arXiv:1510.07805, (2015).Google Scholar

  • [2]

    Bavard, J.: Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe modulaire, to appear in Geom. Topol., arXiv:1409.6566.Google Scholar

  • [3]

    Behrstock, J. A.: Asymptotic geometry of the mapping class group and Teichmuller space, Geom. Topol. 10 (2006), 1523–1578.CrossrefGoogle Scholar

  • [4]

    Bestvina, M.—Fujiwara, K.: Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 69–89 (electronic).CrossrefGoogle Scholar

  • [5]

    Bowditch, B.: Tight geodesics in the curve complex, Invent. Math. 171 (2008), 281–300.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    Bridson, M. R.—Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren Math. Wiss. 319 [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999.Google Scholar

  • [7]

    Calegari, D.: Big mapping class groups and dynamics, Geometry and the imagination, personnal blog post, (2009), lamington.wordpress.com/2009/06/22/big-mapping-class-groups-and-dynamics.Google Scholar

  • [8]

    Coornaert, M.—Delzant, T.—Papadopoulos, A.: Géométrie et Théorie des Groupes – les Groupes Hyperboliques de Gromov. Lecture Notes in Math. 1441, 1990.Google Scholar

  • [9]

    Dahmani, F.—Guirardel, V.—Osin, D.: Hyperbolically embedded subgroups and rotating families in group acting on hyperbolic spaces, arXiv:1111.7048, (2011).Google Scholar

  • [10]

    Ghys, E.: Topologie des Feuilles GénGériques, Ann. of Math. 141 (1995), 387–422.CrossrefGoogle Scholar

  • [11]

    Masur, H. A.—Minsky, Y. N.: Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), 103–149.CrossrefGoogle Scholar

  • [12]

    Osin, D.: Acylindrically hyperbolic groups, arXiv:1304.1246, (2013).Google Scholar

  • [13]

    Richards, I.: On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259–269.CrossrefGoogle Scholar

  • [14]

    Sisto, A.: Quasi-convexity of hyperbolically embedded subgroups, arXiv:1310.7753, (2013).Google Scholar

About the article

Received: 2016-01-31

Accepted: 2016-03-23

Published Online: 2018-02-09

Published in Print: 2018-02-23

Citation Information: Mathematica Slovaca, Volume 68, Issue 1, Pages 71–76, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0081.

Export Citation

© 2018 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in