[1]

Alizadeh, M.—Das, A. K.—Maimani, H. R.—Pournaki, M. R.–Yassemi, S.: *On the diameter and girth of zero*-*divisor graphs of posets*, Discrete Appl. Math. **160** (2012), 1319–1324.CrossrefWeb of ScienceGoogle Scholar

[2]

Anderson, D. F.—Livingston, P. S.: *The zero*-*divisor graph of a commutative ring*, J. Algebra **217** (1999), 434–447.CrossrefWeb of ScienceGoogle Scholar

[3]

Beck I.: *Coloring of a commutative ring*, J. Algebra **116** (1988), 208–226.CrossrefGoogle Scholar

[4]

Halaš, R.—Jukl, M.: *On Beck’s coloring of posets*, Discrete Math. **309** (2009), 4584–4589.CrossrefWeb of ScienceGoogle Scholar

[5]

Halaš, R.—Länger, H.: *The zero divisor graph of a qoset*, Order **27** (2010), 343–351.CrossrefGoogle Scholar

[6]

Janowitz, M. F.: *Section semicomplemented lattices*, Math. Z. **108** (1968), 63–76.CrossrefGoogle Scholar

[7]

Joshi, V.: *On completion of section semicomplemented posets*, Southeast Asian Bull. Math. **31** (2007), 881–892.Google Scholar

[8]

Joshi, V.: *Zero divisor graph of a poset with respect to an ideal*, Order **29** (2012), 499–506.CrossrefWeb of ScienceGoogle Scholar

[9]

Joshi, V.—Khiste, A. U.: *On the zero divisor graph of a Boolean poset*, Math. Slovaca **64** (2014), 511–519.Google Scholar

[10]

Joshi, V.—Khiste, A. U.: *Complement of the zero*-*divisor graph of a lattice*, Bull. Aust. Math. Soc. **89** (2014), 177–190.CrossrefWeb of ScienceGoogle Scholar

[11]

Joshi, V.—Sarode, S. *Beck’s conjecture and multiplicative lattices*, Discrete Math. **338** (2015), 93–98.CrossrefWeb of ScienceGoogle Scholar

[12]

Joshi, V.—Waphare, B. N.—Pourali, H. Y.: *On generalized zero divisor graph of a poset*, Discrete Appl. Math. **161** (2013), 1490–1495.CrossrefWeb of ScienceGoogle Scholar

[13]

Joshi, V.—Waphare, B. N.—Pourali, H. Y.: *Zero divisor graphs of lattices and primal ideals*, Asian-Eur. J. Math **5** (2012), 1250037, 9 pp.Google Scholar

[14]

Joshi, V.—Waphare, B. N.—Pourali, H. Y.: *The graph of equivalence classes of zero divisor*, ISRN Discrete Math. (2014), Article ID 896270, 7 pages.Google Scholar

[15]

Kelly D.—Rival, I.: *Crowns*, *fences*, *and dismantlable lattices*, Canad. J. Math. **26** (1974), 1257–1271.CrossrefGoogle Scholar

[16]

LaGrange, J. D.: *Complemented zero divisor graphs and Boolean rings*, J. Algebra **315** (2007), 600–611.CrossrefWeb of ScienceGoogle Scholar

[17]

Lu, D.—Wu, T.: *The zero divisor graphs of posets and an application to semigroups*, Graphs Combin. **26** (2010), 793–804.CrossrefGoogle Scholar

[18]

Mohammadian, A.: *On zero divisor graphs of Boolean rings*, Pacific J. Math. **251** (2011), 375–383.CrossrefWeb of ScienceGoogle Scholar

[19]

Nimbhorkar, S. K.—Wasadikar, M. P.—DeMeyer, L.: *Coloring of semilattices*, Ars Combin. **84** (2007), 97–104.Google Scholar

[20]

Patil, A.—Waphare, B. N.—Joshi, V.—Pourali, H. Y.: *Zero*-*divisor graphs of lower dismantlable lattices I*, Math. Slovaca **67** (2017), 285–296.Web of ScienceGoogle Scholar

[21]

Rival I.: *Lattices with doubly irreducible elements*, Canad. Math. Bull. **17** (1974), 91–95.CrossrefGoogle Scholar

[22]

Thakare, N. K.—Pawar, M. M.—Waphare, B. N.: *A structure theorem for dismantlable lattices and enumeration*, Period. Math. Hungar. **45** (2002), 147–160.CrossrefGoogle Scholar

[23]

West, D. B.: *Introduction to Graph Theory*, Second Edition, Prentice-Hall of India, New Delhi, 2002.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.