[1]

Aliprantis, C. D.—Burkinshaw, O.: *Locally solid Riesz Spaces with Applications to Economics*. Math. Surveys Monogr. 105, Amer. Math. Soc., Providence R. I., 2003.Google Scholar

[2]

Aliprantis, C. D.—Burkinshaw, O.: *Positive Operators*, Springer-Verlag, Dordrecht, 2006.Google Scholar

[3]

Azarpanah, F.: *When is C (X) a clean ring?*, Acta Math. Hungar. **94** (2002), 53–58.CrossrefGoogle Scholar

[4]

Banaschewski, B.: *f*-*rings and the Stone*-*Weierstrass theorem*, Order **18** (2001), 105–117.CrossrefGoogle Scholar

[5]

Bigard, A.—Keimel, K.—Wolfenstein, S.: *Groupes et Anneaux Réticulés*, Springer-Verlag, Berlin-Heidelberg-New York, 1977.Google Scholar

[6]

Birkhoff, G.—Pierce, R. S.: *Lattice*-*ordered rings*, An. Acad. Brasil. Ciênc. **28** (1956), 41–69.Google Scholar

[7]

Boulabiar, K.—Smiti, S.: *When is C(X) polynomially ideal?*, J. Comm. Algebra **17** (2015), 473–493.Google Scholar

[8]

Darnel, M.: *Theory of Lattice*-*Ordered Groups*, Marcel Dekker, New York, 1995.Google Scholar

[9]

Gersten, S.: *Some exact sequences in the higher K*-*theory of rings*. In: Algebraic *K*-Theory I, Lecture Notes in Math. 341, Springer, New York, 1973.Google Scholar

[10]

Gillman, L.—Jerison, M.: *Rings of Continuous Functions*, Van Nostrand Co. Inc., Princeton, N.J., Toronto, London, New York, 1960.Google Scholar

[11]

Hager, A. W.—Kimber, C. M.—McGovern, W. Wm.: *Clean unital ℓ*-*groups*, Math. Slovaca **63** (2013), 979–992.Web of ScienceGoogle Scholar

[12]

Hager, A. W.—Kimber, C. M.: *Clean rings of continuous functions*, Algebra Universalis **56** (2007), 77–92.Web of ScienceCrossrefGoogle Scholar

[13]

Henriksen, M.—Johnson, D. G.: *On the structure of a class of archimedean lattice*-*ordered algebras*, Fund. Math. **50** (1961), 73–94.CrossrefGoogle Scholar

[14]

Huisjmans, C. B.—Depagter, B.: *Ideal theory in f*-*algebras*, Trans. Amer. Math. Soc. **269** (1982), 225–245.Google Scholar

[15]

Huisjmans, C. B.—Depagter, B.: *Subalgebras and Riesz subspaces of f*-*algebras*, Proc. London Math. Soc. **48** (1984), 161–174.Google Scholar

[16]

Jacobson, N.: *Structure of Rings*. Amer. Math. Soc. Colloq. Publ. 37, Amer. Math. Soc, Providence/R. I., 1964.Google Scholar

[17]

Jacobson, N.: *Structure and Representations of Jordan Algebras*. Amer. Math. Soc. Colloq. Publ. 36, Amer. Math. Soc, Providence/R. I., 1968.Google Scholar

[18]

Lambek, J.: *Lectures on Rings and Modules*, with an appendix by Ian G. Connell, Blaisdell Publishing Co. Ginn and Co., Waltham Mass., Toronto, Ont., London, 1966.Google Scholar

[19]

Lavrič, B.: *On the Freudenthal’s spectral theorem*, Indag. Math. **48** (1986), 411–421.Google Scholar

[20]

Luxemburg, W. A.—Zaanen, A. C.: *Riesz Spaces I*, North-Holland, Amsterdam/London, 1971.Google Scholar

[21]

McGovern, W. Wm.: *Clean semiprime f*-*rings with bounded inversion*, Comm. Algebra **31** (2003), 3295–3304.CrossrefGoogle Scholar

[22]

Miers, C. R.: *Polynomially ideal C*^{*}-*algebras*, Amer. Math. J. **98** (1976), 165–170.CrossrefGoogle Scholar

[23]

Nicholson, W. K.: *Lifting idempotents and exchange rings*, Trans. Amer. Math. Soc. **229** (1977), 269–278.CrossrefGoogle Scholar

[24]

Zaanen, A. C.: *Introduction to Operator Theory in Riesz Spaces*, Springer-Verlag, Berlin, 1997.Google Scholar

[25]

Zaanen, A. C.: *Riesz Space II*, North-Holland, Amsterdam, London, 1983.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.