[1]

Alilooee, A.—Faridi, S.: *Graded Betti numbers of path ideals of cycles and lines*, J. Algebra Appl. **17** (2018), 17 pp.Google Scholar

[2]

Banerjee, A.: *Regularity of path ideals of gap free graphs*, J. Pure Appl. Algebra **221(10)** (2017), 2409–2419.CrossrefGoogle Scholar

[3]

Bouchat, R. R.—Hà, H. T.—O’Keefe, A.: *Path ideals of rooted trees and their graded Betti numbers*, J. Comb. Theory Ser. A **118** (2011), 2411–2425.CrossrefGoogle Scholar

[4]

Bruns, W.—Herzog, J.: *Cohen-Macaulay Rings*, Cambridge University Press, Cambridge, 1993.Google Scholar

[5]

Conca, A.—De Negri, E.: *M-sequences, graph ideals and ladder ideals of linear type*, J. Algebra **211** (1999), 599–624.CrossrefGoogle Scholar

[6]

Eagon, J. A—Reiner, V.: *Resolutions of Stanley-Reisner rings and Alexander duality*, J. Pure Appl. Algebra **130** (1998), 265–275.CrossrefGoogle Scholar

[7]

Erey, N.: *Multigraded Betti numbers of some path ideals*, arXiv:1410.8242.Google Scholar

[8]

Greuel, G.-M.—Pfister, G.—Schönemann, H.: *Singular* 2.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern, 2001, http://www.singular.uni-kl.de.

[9]

Hà, H. .—Woodroofe, R.: *Results on the regularity of square-free monomial ideals*, Adv. Appl. Math. **58** (2014), 21–36.CrossrefGoogle Scholar

[10]

He, J.—Van Tuyl, A.: *Algebraic properties of the path ideal of a tree*, Comm. Algebra **38** (2010), 1725–1742.CrossrefGoogle Scholar

[11]

Herzog, J.: *A Generalization of the Taylor Complex Construction*, Comm. Algebra **35)** (2007), 1747–1756.Google Scholar

[12]

Huneke C.—Dao, H.—Schweig, J.: *Bounds on the regularity and projective dimension of ideals associated to graphs*, J. Algebraic Combin. **38** (2013), 37–55.CrossrefGoogle Scholar

[13]

Kubitzke, M.—Olteanu, A.: *Algebraic properties of classes of path ideals of posets*, J. Pure Appl. Algebra **218** (2014), 1012–1033.CrossrefGoogle Scholar

[14]

Madani, S. S.—Kiani, D.—Terai, N.: *Sequentially Cohen-Macaulay path ideals of cycles*, Bull. Math. Soc. Sci. Math. Roumanie **54** (2011), 353–363.Google Scholar

[15]

Morey, S.—Villarreal, R. H.: *Edge ideals: algebraic and combinatorial properties*. In: Progress in Commutative Algebra 1. Combinatorics and Homology (C. Francisco, L. C. Klingler, S. Sather-Wagstaff and J. C. Vassilev, eds.), De Gruyter, Berlin, 2012, pp. 85–126.Google Scholar

[16]

Terai, N.: *Generalization of Eagon-Reiner theorem and h-vectors of graded rings*, preprint, 2000.Google Scholar

[17]

Vasconcelos, W. V.: *Computational Methods in Commutative Algebra and Algebraic Geometry*, Springer-Verlag, 1998.Google Scholar

[18]

Villarreal, R. H.: *Cohen-Macaulay graphs*, Manuscripta Math. **66** (1990), 277–293.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.