Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year


IMPACT FACTOR 2016: 0.346
5-year IMPACT FACTOR: 0.412

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.489
Source Normalized Impact per Paper (SNIP) 2016: 0.745

Mathematical Citation Quotient (MCQ) 2016: 0.24

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 68, Issue 2

Issues

Groups with positive rank gradient and their actions

Mark Shusterman
Published Online: 2018-03-31 | DOI: https://doi.org/10.1515/ms-2017-0106

Abstract

We show that given a finitely generated LERF group G with positive rank gradient, and finitely generated subgroups A, BG of infinite index, one can find a finite index subgroup B0 of B such that [G : 〈AB0〉] = ∞. This generalizes a theorem of Olshanskii on free groups. We conclude that a finite product of finitely generated subgroups of infinite index does not cover G. We construct a transitive virtually faithful action of G such that the orbits of finitely generated subgroups of infinite index are finite. Some of the results extend to profinite groups with positive rank gradient.

MSC 2010: 20E06; 20E07; 20E18; 20E26; 20F05; 20F65; 20F69; 43A05; 60B15; 58E40

Keywords: rank gradient; group actions; products of subgroups; Olshanskii’s theorem

References

  • [1]

    Abert, M.—Gelander, T.—Nikolov, N.: Rank, combinatorial cost and homology torsion growth in higher rank lattices, (2015), preprint.Google Scholar

  • [2]

    Abert, M.—Jaikin-Zapirain, A.—Nikolov, N.: The rank gradient from a combinatorial viewpoint, Groups Geom. Dyn. 5 (2011), 213–230.Web of ScienceGoogle Scholar

  • [3]

    Abert, M.—Nikolov, N.: Rank gradient, cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc. 14 (2012), 1657–1677.Web of ScienceCrossrefGoogle Scholar

  • [4]

    Chaynikov, V.: Actions of maximal growth of hyperbolic groups, (2012), preprint.Google Scholar

  • [5]

    de Cornulier, Y.: Finitely presented wreath products and double coset decompositions, Geom. Dedic. 122 (2006), 89–108.CrossrefGoogle Scholar

  • [6]

    Kar, A.—Nikolov, N.: Cost and rank gradient of Artin groups and their relatives, Groups Geom. Dyn. 8 (2014), 1195–1205.Web of ScienceCrossrefGoogle Scholar

  • [7]

    Lackenby, M.: Expanders, rank and graphs of groups, Israel J. Math. 146 (2005), 357–370.CrossrefGoogle Scholar

  • [8]

    Minasyan, A.: Some properties of subsets of hyperbolic groups, Comm. Algebra 33 (2005), 909–935.CrossrefGoogle Scholar

  • [9]

    Olshanskii, A.: On pairs of finitely generated subgroups in free groups, Proc. Amer. Math. Soc. 143 (2015), 4177–4188.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    Osin, D.: Rank gradient and torsion groups, Bull. Lond. Math. Soc. 43 (2011), 10–16.CrossrefGoogle Scholar

  • [11]

    Pappas, N.: Rank gradient and p-gradient of amalgamated free products and HNN extensions, Comm. Algebra 43 (2015), 4515–4527.CrossrefGoogle Scholar

  • [12]

    Schlage-Puchta, J. C.: A p-group with positive Rank Gradient, J. Group Theory 15 (2012), 261–270.Web of ScienceGoogle Scholar

  • [13]

    Shusterman, M.: Ranks of subgroups in boundedly generated groups, Bull. Lond. Math. Soc. 48 (2016), 539–547.CrossrefGoogle Scholar

  • [14]

    Shusterman, M.: Ascending chains of finitely generated subgroups, (2016), preprint.Google Scholar

  • [15]

    Snopce, I.—Zalesskii, P.: Subgroup properties of pro-p extensions of centralisers, Sel. Math. New Ser. 20 2014, 465–489.CrossrefGoogle Scholar

About the article

Received: 2016-02-09

Accepted: 2016-06-17

Published Online: 2018-03-31

Published in Print: 2018-04-25


Citation Information: Mathematica Slovaca, Volume 68, Issue 2, Pages 353–360, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0106.

Export Citation

© 2018 Mathematical Institute Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in