[1]

Abramowitz, M.—Stegun, I. A. (eds.): *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, Dover Publications Inc., New York, 1965.Google Scholar

[2]

Ali, R. M.—Lee, S. K.—Ravichandran, V.—Supramanian, S.: *The Fekete-Szegö coefficient functional for transforms of analytic funtions*, Bull. Iranian Math. Soc. **35** (2009), 119–142.Google Scholar

[3]

Al-Kharsani, H. A.: *Multiplier transformations and k-uniformly p-valent starlike functions*, Gen. Math. **17** (2009), 13–22.Google Scholar

[4]

Alzer, H.: *Error function inequalities*, Adv. Comput. Math. **33** (2010), 349–379.Web of ScienceCrossrefGoogle Scholar

[5]

Aral, A.—Gupta, V.—Agarwal, R. P.: *Applications of q-Calculus in Operator Theory*, Springer, New York, 2013.Google Scholar

[6]

Carlitz, L.: *The inverse of the error function*, Pacific J. Math. **13** (1963), 459–470.CrossrefGoogle Scholar

[7]

Chaudhry, M. A.—Qadir, A.—Zubair, S. M.: *Generalized error functions with applications to probability and heat conduction*, Int. J. Appl. Math. **9** (2002), 259–278.Google Scholar

[8]

Coman, D.: *The radius of starlikeness for the error function*, Stud. Univ. Babeş-Bolyai Math. **36** (1991), 13–16.Google Scholar

[9]

El-Ashwah, R.—Kanas, S.: *Fekete Szegö inequalities for quasi-subordination functions classes of complex order*, Kyungpook Math. J. **55**(2015), 679–688.CrossrefGoogle Scholar

[10]

Elbert, A.—Laforgia, A.: *The zeros of the complementary error function*, Numer. Algorithms **49** (2008), 153–157.Web of ScienceCrossrefGoogle Scholar

[11]

Haji Mohd, M.—Darus, M.: *Fekete-Szegö problems for quasi-subordination classes*, Abstr. Appl. Anal. **2012**, Article ID 192956, 14 pp.Google Scholar

[12]

Herden, G.: *The role of error-functions in order to obtain relatively optimal classification*. Classification and related methods of data analysis (Aachen, 1987), North-Holland, Amsterdam, 1988, pp. 105–111.Google Scholar

[13]

Jackson, F. H.: *On q-definite integrals*, Quart. J. Pure Appl. Math. **41** (1910), 193–203.Google Scholar

[14]

Jackson, F. H.: *On q-functions and a certain difference operator*, Transactions of the Royal Society of Edinburgh **46** (1908), 253–281.Google Scholar

[15]

Kanas, S.: *Techniques of the differential subordination for domains bounded by conic sections*, Int. J. Math. Math. Sci. **38** (2003), 2389–2400.Google Scholar

[16]

Kanas, S.: *Subordination for domains bounded by conic sections*, Bull. Belg. Math. Soc. Simon Stevin **15** (2008), 589–598.Google Scholar

[17]

Kanas, S.: *Norm of pre-Schwarzian derivative for the class of k-uniform convex and k-starlike functions*, Appl. Math. Comput. **215** (2009), 2275–2282.Google Scholar

[18]

Kanas, S.—Srivastava, H. M.: *Linear operators associated with k-uniform convex functions*, Integral Transforms Spec. Funct. **9** (2000), 121–132.CrossrefGoogle Scholar

[19]

Kanas, S.—Sugawa, T., *On conformal representation of the interior of an ellipse*, Ann. Acad. Sci. Fenn. Math. **31** (2006), 329–348.Google Scholar

[20]

Kanas, S.—Wisniowska, A.: *Conic regions and k-uniform convexity*, J. Comput. Appl. Math. **105** (1999), 327–336.CrossrefGoogle Scholar

[21]

Kanas, S.—Wisniowska, A.: *Conic regions and k-starlike function*, Rev. Roumaine Math. Pures Appl. **45** (2000), 647–657.Google Scholar

[22]

Kanas, S.—Răducanu, D.: *Some subclass of analytic functions related to conic domains*, Math. Slovaca **64** (2014), 1183–1196.Google Scholar

[23]

Philip, J. R.: *Numerical solution of equations of the diffusion type with diffusivity concentration-dependent*, Trans. Faraday Soc. **51** (1955), 885–892.CrossrefGoogle Scholar

[24]

Purohit, S. D.—Raina, R. K.: *Fractional q-calculus and certain subclasses of univalent analytic functions*, Mathematica **55** (2013), 62–74.Google Scholar

[25]

Ramachandran, C.—Dhanalakshmi K.—Vanitha, L.: *Fekete-Szegö inequality for certain classes of analytic functions associated with Srivastava-Attiya integral operator*, Appl. Math. Sci. **9** (2015), 3357–3369.Google Scholar

[26]

Ramachandran, C.—Annamalai, S.: *Fekete-Szegö Coeffcient for a general class of spirallike functions in unit disk*, Appl. Math. Sci. **9** (2015), 2287—2297.Google Scholar

[27]

Robertson, M. S.: *Quasi-subordination and coefficient conjectures*, Bull. Amer. Math. Soc. **76** (1970), 1–9.CrossrefGoogle Scholar

[28]

Sim, Y. J.—Kwon, O. S.—Cho, N. E.—Srivastava, H. M.: *Some classes of analytic functions associated with conic regions*, Taiwanese J. Math. **16** (2012), 387–408.CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.