[1]

Airault, H.—Bouali, A.: *Differential calculus on the Faber polynomials*, Bull. Sci. Math. **130** (2006), 179–222.CrossrefGoogle Scholar

[2]

Airault, H.—Ren, J.: *An algebra of differential operators and generating functions on the set of univalent functions*, Bull. Sci. Math. **126** (2002), 343–367.CrossrefGoogle Scholar

[3]

Airault, H.—Neretin, Y. A.: *On the action of Virasoro algebra on the space of univalent functions*, Bull. Sci. Math. **132** (2008), 27–39.Web of ScienceCrossrefGoogle Scholar

[4]

Ali, R. M.—Lee, S. K.—Ravichandran, V.—Subramaniam, S.: *Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions*, Appl. Math. Lett. **25** (2012), 344–351.CrossrefWeb of ScienceGoogle Scholar

[5]

Altinkaya, Ş.—Yalçin, S.: *Faber polynomial coefficient bounds for a subclass of bi-univalent functions*, C. R. Math. Acad. Sci. Paris. **353** (2015), 1075–1080.CrossrefGoogle Scholar

[6]

Brannan, D. A.—Taha, T. S.: *On some classes of bi-univalent functions*, Studia Univ. Babeş-Bolyai Math. **31** (1986), 70–77.Google Scholar

[7]

Bouali, A.: *Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions*, Bull. Sci. Math. **130** (2006), 49–70.CrossrefGoogle Scholar

[8]

Duren, P. L.: *Univalent functions*. Grundlehren Math. Wiss. 259, Springer Verlag, New York, 1983.Google Scholar

[9]

Faber, G.: *Über polynomische Entwickelungen*, Math. Ann. **57** (1903), 389–408.CrossrefGoogle Scholar

[10]

Frasin, B. A.—Aouf, M. K.: *New subclasses of bi-univalent functions*, Appl. Math. Lett. **24** (2011), 1569–1573.Web of ScienceCrossrefGoogle Scholar

[11]

Goyal, S. P.—Kumar, R.: *Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions*, Math. Slovaca. **65** (2015), 533–544.Web of ScienceGoogle Scholar

[12]

Jahangiri, J. M.—Hamidi, S. G.: *Coefficient estimates for certain classes of bi-univalent functions*, Int. J. Math. Math. Sci. (2013), Article ID 190560, 4 pp.Google Scholar

[13]

Hamidi, S. G.—Halim, S. A.—Jahangiri, J. M.: *Faber polynomial coefficient estimates for meromorphic bi-starlike functions*, Int. J. Math. Math. Sci. (2013), Article ID 498159, 4 pp.Google Scholar

[14]

Hamidi, S. G.—Jahangiri, J. M.: *Faber polynomial coefficients of bi-subordinate functions*, C. R. Math. Acad. Sci. Paris. **354** (2016), 365–370.CrossrefGoogle Scholar

[15]

Kanas, S.—Kim, S.-A.—Sivasubramanian, S.: *Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent function*, Ann. Polon. Math. **113** (2015), 295–304.CrossrefGoogle Scholar

[16]

Lewin, M.: *On a coefficient problem for bi-univalent functions*, Proc. Amer. Math. Soc. **18** (1967), 63–68.CrossrefGoogle Scholar

[17]

Li, X.-F.—Wang, A.-P.: *Two new subclasses of bi-univalent functions*, Int. Math. Forum **7** (2012), 1495–1504.Google Scholar

[18]

Ma, W. C.—Minda, D.: *A unified treatment of some special classes of univalent functions*. In: Proceedings of the Conference on Complex Analysis, Tianjin, 1992. Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994, pp. 157–169.Google Scholar

[19]

Robertson, M. S.: *Quasi-subordinate functions*. In: Mathematical Essays dedicated to A. J. MacIntyre, Ohio University Press, Athens, OH, 1970, pp. 311–330.Google Scholar

[20]

Robertson, M. S.: *Quasi-subordination and coefficient conjecture*, Bull. Amer. Math. Soc. **76** (1970), 1–9.CrossrefGoogle Scholar

[21]

Srivastava, H. M.—Mishra, A. K.—Gochhayat, P.: *Certain subclasses of analytic and biunivalent functions*, Appl. Math. Lett. **23** (2010), 1188–1192.CrossrefGoogle Scholar

[22]

Srivastava, H. M.—Bansal, D.: *Coefficient estimates for a subclass of analytic and bi-univalent functions*, J. Egyptian Math. Soc. **23** (2015), 242–246.CrossrefGoogle Scholar

[23]

Todorov, P. G.: *On the Faber polynomials of the univalent functions of class Σ*, J. Math. Anal. Appl. **162** (1991), 268–276.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.