Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year


IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 68, Issue 2

Issues

Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate

Ahmad Zireh / Ebrahim Analouei Adegani / Mahmood Bidkham
Published Online: 2018-03-31 | DOI: https://doi.org/10.1515/ms-2017-0108

Abstract

In this paper, we use the Faber polynomial expansion to find upper bounds for |an| (n ≥ 3) coefficients of functions belong to classes HqΣ(λ,h),STqΣ(α,h) andMqΣ(α,h) which are defined by quasi-subordinations in the open unit disk 𝕌. Further, we generalize some of the previously published results.

MSC 2010: Primary 30C45; Secondary 30C50

Keywords: Bi-univalent functions; coefficient estimates; Faber polynomial expansion; quasi-subordinate

This work was supported by Shahrood University of Technology.

References

  • [1]

    Airault, H.—Bouali, A.: Differential calculus on the Faber polynomials, Bull. Sci. Math. 130 (2006), 179–222.CrossrefGoogle Scholar

  • [2]

    Airault, H.—Ren, J.: An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), 343–367.CrossrefGoogle Scholar

  • [3]

    Airault, H.—Neretin, Y. A.: On the action of Virasoro algebra on the space of univalent functions, Bull. Sci. Math. 132 (2008), 27–39.Web of ScienceCrossrefGoogle Scholar

  • [4]

    Ali, R. M.—Lee, S. K.—Ravichandran, V.—Subramaniam, S.: Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344–351.CrossrefWeb of ScienceGoogle Scholar

  • [5]

    Altinkaya, Ş.—Yalçin, S.: Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Math. Acad. Sci. Paris. 353 (2015), 1075–1080.CrossrefGoogle Scholar

  • [6]

    Brannan, D. A.—Taha, T. S.: On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math. 31 (1986), 70–77.Google Scholar

  • [7]

    Bouali, A.: Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions, Bull. Sci. Math. 130 (2006), 49–70.CrossrefGoogle Scholar

  • [8]

    Duren, P. L.: Univalent functions. Grundlehren Math. Wiss. 259, Springer Verlag, New York, 1983.Google Scholar

  • [9]

    Faber, G.: Über polynomische Entwickelungen, Math. Ann. 57 (1903), 389–408.CrossrefGoogle Scholar

  • [10]

    Frasin, B. A.—Aouf, M. K.: New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573.Web of ScienceCrossrefGoogle Scholar

  • [11]

    Goyal, S. P.—Kumar, R.: Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions, Math. Slovaca. 65 (2015), 533–544.Web of ScienceGoogle Scholar

  • [12]

    Jahangiri, J. M.—Hamidi, S. G.: Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. (2013), Article ID 190560, 4 pp.Google Scholar

  • [13]

    Hamidi, S. G.—Halim, S. A.—Jahangiri, J. M.: Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. (2013), Article ID 498159, 4 pp.Google Scholar

  • [14]

    Hamidi, S. G.—Jahangiri, J. M.: Faber polynomial coefficients of bi-subordinate functions, C. R. Math. Acad. Sci. Paris. 354 (2016), 365–370.CrossrefGoogle Scholar

  • [15]

    Kanas, S.—Kim, S.-A.—Sivasubramanian, S.: Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent function, Ann. Polon. Math. 113 (2015), 295–304.CrossrefGoogle Scholar

  • [16]

    Lewin, M.: On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.CrossrefGoogle Scholar

  • [17]

    Li, X.-F.—Wang, A.-P.: Two new subclasses of bi-univalent functions, Int. Math. Forum 7 (2012), 1495–1504.Google Scholar

  • [18]

    Ma, W. C.—Minda, D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis, Tianjin, 1992. Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994, pp. 157–169.Google Scholar

  • [19]

    Robertson, M. S.: Quasi-subordinate functions. In: Mathematical Essays dedicated to A. J. MacIntyre, Ohio University Press, Athens, OH, 1970, pp. 311–330.Google Scholar

  • [20]

    Robertson, M. S.: Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc. 76 (1970), 1–9.CrossrefGoogle Scholar

  • [21]

    Srivastava, H. M.—Mishra, A. K.—Gochhayat, P.: Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188–1192.CrossrefGoogle Scholar

  • [22]

    Srivastava, H. M.—Bansal, D.: Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), 242–246.CrossrefGoogle Scholar

  • [23]

    Todorov, P. G.: On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162 (1991), 268–276.CrossrefGoogle Scholar

About the article


Received: 2016-02-17

Accepted: 2016-05-11

Published Online: 2018-03-31

Published in Print: 2018-04-25


Citation Information: Mathematica Slovaca, Volume 68, Issue 2, Pages 369–378, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0108.

Export Citation

© 2018 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in