Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year


IMPACT FACTOR 2016: 0.346
5-year IMPACT FACTOR: 0.412

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.489
Source Normalized Impact per Paper (SNIP) 2016: 0.745

Mathematical Citation Quotient (MCQ) 2016: 0.24

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 68, Issue 2

Issues

Derivatives of Hadamard type in vector optimization

Karel Pastor
  • Department of Mathematics Faculty of Education Palacký University Žiškovo náměstí 5 771 40 Olomouc Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-31 | DOI: https://doi.org/10.1515/ms-2017-0113

Abstract

In our paper we will continue the comparison which was started by Vsevolod I. Ivanov [Nonlinear Analysis 125 (2015), 270–289], where he compared scalar optimality conditions stated in terms of Hadamard derivatives for arbitrary functions and those which was stated for -stable functions in terms of Dini derivatives. We will study the vector optimization problem and we show that also in this case the optimality condition stated in terms of Hadamard derivatives is more advantageous.

Keywords: C1,1-function; ℓ-stable function; generalized second-order derivative; optimality conditions

MSC 2010: 49K10; 49J52; 49J50; 90C29; 90C30

References

  • [BP1]

    Bednařík, D.—Pastor, K.: On second-order conditions in unconstrained optimization, Math. Program. (Ser. A) 113 (2008), 283–298.CrossrefGoogle Scholar

  • [BP2]

    Bednařík, D.—Pastor, K.: Differentiability properties of functions that are ℓ-stable at a point, Nonlinear Anal. 69 (2008), 3128–3135.Web of ScienceCrossrefGoogle Scholar

  • [BP3]

    Bednařík, D.—Pastor, K.: -stable functions are continuous, Nonlinear Anal. 70 (2009), 2317–2324.CrossrefWeb of ScienceGoogle Scholar

  • [BP4]

    Bednařík, D.—Pastor, K.: Fréchet approach in second-order optimization, Appl. Math. Lett. 22 (2009), 960–967.CrossrefGoogle Scholar

  • [BP5]

    Bednařík, D.—Pastor, K.: -stable functions are continuous, Nonlinear Anal. 70 (2009), 2317–2324.CrossrefWeb of ScienceGoogle Scholar

  • [BP6]

    Bednařík, D.—Pastor, K.: Decrease of C1,1 property in vector optimization, RAIRO – Operations Research 43 (2009), 359–372.CrossrefWeb of ScienceGoogle Scholar

  • [BP7]

    Bednařík, D.—Pastor, K.: On l-stable mappings with values in infinite dimensional Banach spaces, Nonlinear Anal. 72 (2010), 1198–1209.Web of ScienceCrossrefGoogle Scholar

  • [BP8]

    Bednařík, D.—Pastor, K.: On second-order condition in constrained vector optimization, Nonlinear Anal. 74 (2011), 1372–1382.CrossrefGoogle Scholar

  • [CC]

    Cominetti, R.—Correa, R.: A generalized second-order derivative in nonsmooth optimization, SIAM J. Control Optim. 28 (1990), 789–809.CrossrefGoogle Scholar

  • [CHN]

    Chan, W. L.—Huang, L. R.—Ng, K. F.: On generalized second-order derivatives and Taylor expansions in nonsmooth optimization, SIAM J. Control Optim. 32 (1994), 591–611.CrossrefGoogle Scholar

  • [GGR]

    Ginchev, I.—Guerraggio, A.—Rocca, M.: From scalar to vector optimization, Appl. Math. 51 (2006), 5–36.CrossrefGoogle Scholar

  • [GL]

    Guerragio, A.—Luc, D. T.: Optimality conditions for C1,1 vector optimization problems, J. Optim. Theory Appl. 109 (2001), 615–629.Web of ScienceCrossrefGoogle Scholar

  • [GZ]

    Georgiev, P. G.—Zlateva, N. P.: Second-order Subdifferentials of C1,1 Functions and Optimality Conditions, Set-Valued Anal. 4 (1996), 101–117.CrossrefGoogle Scholar

  • [DP1]

    Dvorská, M.—Pastor, K.: On comparison of ℓ-stable vector optimization results, Math. Slovaca 64 (2014), 1–18.Web of ScienceGoogle Scholar

  • [DP2]

    Dvorská, M.—Pastor, K.: Generalization of C1,1 property in infinite dimension, Acta Math. Vietnam. 41 (2016), 265–275.Web of ScienceCrossrefGoogle Scholar

  • [DR]

    Demyanov, V. F.—Rubinov, M.: Constructive Nonsmooth Analysis. In: Approximation & Optimization, vol. 7, Peter Lang, Frankfurt am Main, 1995.Google Scholar

  • [G]

    Ginchev, I.: On scalar and vector ℓ-stable functions, Nonlinear Anal. 74 (2011), 182–194.CrossrefWeb of ScienceGoogle Scholar

  • [GG]

    Ginchev, I.—Guerraggio, A.: Second-order conditions for constrained vector optimization problems with ℓ-stable data, Optimization 60 (2011), 179–199.CrossrefWeb of ScienceGoogle Scholar

  • [HSN]

    Hiriart-Urruty, J. B.—Strodiot, J. J.—Nguyen, V. H.: Generalized Hessian matrix and second-order optimality conditions for problems with C1,1 data, Appl. Math. Optim. 11 (1984), 43–56.CrossrefGoogle Scholar

  • [I]

    Ivanov, V. I.: Second-optimality conditions with arbitrary nondifferentiable function in scalar and vector optimization, Nonlinear Anal. 125 (2015), 270–289.Web of ScienceCrossrefGoogle Scholar

  • [J]

    Jahn, J.: Vector Optimization, Springer-Verlag, New York, 2004.Google Scholar

  • [JL]

    Jeyakumar, V.—Luc, D. T.: Nonsmooth Vector Functions and Continuous Optimization, Springer, Berlin, 2008.Google Scholar

  • [KT1]

    Khanh, P. Q.—Tuan, N. D.: Optimality conditions for nonsmooth multiobjective optimization using Hadamard directional derivatives, J. Optim. Theory Appl. 133 (2007), 341–357.CrossrefWeb of ScienceGoogle Scholar

  • [KT2]

    Khanh, P. Q.—Tuan, N. D.: Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming I: ℓ-stability and set-valued directional derivatives, J. Math. Anal. Appl. 403 (2013), 695–702.Web of ScienceCrossrefGoogle Scholar

  • [KT3]

    Khanh, P. Q.—Tuan, N. D.: Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming II: Optimality conditions, J. Math. Anal. Appl. 403 (2013), 703–714.Web of ScienceCrossrefGoogle Scholar

  • [LK]

    Liu, L.—Křížek, M.: The second-order optimality conditions for nonlinear mathematical programming with C1,1 data, Appl. Math. 42 (1997), 311–320.CrossrefGoogle Scholar

  • [LNK]

    Liu, L.—Neittaanmäki, P.—Křížek, M.: Second-order optimality conditions for nondominated solutions of multiobjective programming with C1,1 data, Appl. Math. 45 (2000), 381–397.CrossrefGoogle Scholar

  • [LX]

    Li, S. J.—Xu, S.: Sufficient conditions of isolated minimizers for constrained programming problems, Numer. Funct. Anal. Optim. 31 (2010), 715–727.CrossrefWeb of ScienceGoogle Scholar

  • [M]

    Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications, Springer, Berlin, 2006.Google Scholar

  • [P1]

    Pastor, K.: Differentiability properties of ℓ-stable vector functions in infinite-dimensional normed spaces, Taiwanese J. Math. 18 (2014), 187–197.CrossrefWeb of ScienceGoogle Scholar

  • [P2]

    Pastor, K.: A note on second-order optimality conditions, Nonlinear Anal. 71 (2009), 1964–1969.Web of ScienceCrossrefGoogle Scholar

  • [R]

    Rockafellar, R. T.: Convex Analysis, Princeton University Press, Princeton, 1970.Google Scholar

  • [RW]

    Rockafellar, R. T.—Wets, R. J.-B.: Variational Analysis, Springer-Verlag, New York, 1998.Google Scholar

  • [TR]

    Torre, D. L.—Rocca, M.: Remarks on second order generalized derivatives for differentiable functions with Lipschitzian jacobian, Appl. Math. E-Notes 3 (2003), 130–137.Google Scholar

  • [Y1]

    Yang, X. Q.: On second-order directional derivatives, Nonlinear Anal. 26 (1996), 55–66.CrossrefGoogle Scholar

  • [Y2]

    Yang, X. Q.: On relations and applications of generalized second-order directional derivatives, Nonlinear Anal. 36 (1999), 595–614.CrossrefGoogle Scholar

About the article


Received: 2016-01-12

Accepted: 2016-09-26

Published Online: 2018-03-31

Published in Print: 2018-04-25


Citation Information: Mathematica Slovaca, Volume 68, Issue 2, Pages 421–430, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0113.

Export Citation

© 2018 Mathematical Institute Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in