[1]

Ali, R. M.—Lee, S. K.—Ravichandran, V.—Supramaniam, S.: *The Fekete-Szegö coefficient functional for transforms of analytic functions*, Bull. Iranian Math. Soc. **35** (2009), 119–142.Google Scholar

[2]

Cantor, D. G.: *Power series with integral coefficients*, Bull. Amer. Math. Soc. **69** (1963), 362–366.CrossrefGoogle Scholar

[3]

Deniz, E.—çağlar, M.—Orhan, H.: *The Fekete-Szegö problem for a class of analytic functions defined by Dziok-Srivastava operator*, Kodai Math. J. **35** (2012), 439–462.CrossrefGoogle Scholar

[4]

Duren, P. L.: *Univalent Functions*. Grundlehren Math. Wiss. 259, Springer, New York, 1983.Google Scholar

[5]

Fekete, M.—Szegö, G.: *Eine Bemerkung uber ungerade schlichte Funktionen*, J. London Math. Soc. **8** (1933), 85–89.Google Scholar

[6]

Grenander, U.—Szegö, G.: *Toeplitz Forms and their Applications*. California Monographs in Mathematical Sciences, Univ. California Press, Berkeley, 1958.Google Scholar

[7]

Janteng, A.—Halim, S. A.—Darus, M.: *Hankel determinant for starlike and convex functions*, Int. J. Math. Anal. (Ruse) **1** (2007), 619–625.Google Scholar

[8]

Kanas, S.—Darwish, H. E.: *Fekete Szegö problem for starlike and convex functions of complex order*, Appl. Math. Lett. **23** (2010), 777–782.CrossrefGoogle Scholar

[9]

Lee, S. K.—Ravichandran, V.—Supramaniam, S.: *Bounds for the second Hankel determinant of certain univalent functions*, J. Inequal. Appl. (2013), 2013:281.CrossrefGoogle Scholar

[10]

Ma, W. C.—Minda, D.: *A unified treatment of some special classes of univalent functions*. In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, pp. 157–169.Google Scholar

[11]

Orhan, H.—Deniz, E.—Raducanu, D.: *The Fekete Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains*, Comput. Math. Appl. **59** (2010), 283–295.CrossrefGoogle Scholar

[12]

Ravichandran, V.—Polatoğlu, Y.—Bolcal, M.—Şen, A.: *Certain subclasses of starlike and convex functions of complex order*, Hacettepe J. Math. Stat. **34** (2005), 9–15.Google Scholar

[13]

Srivastava, H. M.—AltIntaŞ, O.—Serenbay, S. K.: *Coefficient bounds for certain subclasses of starlike functions of complex order*, Appl. Math. Lett. **24** (2011), 1359–1363.CrossrefGoogle Scholar

[14]

Xu, Q.-H.—Gui, Y. C.—Srivastava, H. M.: *Coefficient estimates for certain subclasses of analytic functions of complex order*, Taiwanese J. Math. **15** (2011), 2377–2386.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.