[1]

Beltrametti, E. G.—Cassinelli, G.: *The Logic of Quantum Mechanics*, Addison-Wesley, Reading, Mass., 1981.Google Scholar

[2]

Beltrametti, E. G.—Mączyński, M. J.: *On a characterization of classical and nonclassical probabilities*, J. Math. Phys. **32** (1991), 1280–1286.CrossrefGoogle Scholar

[3]

Dorfer, G.—Dorninger, D.—Länger, H.: *On algebras of multidimensional probabilities*, Math. Slovaca **60** (2010), 571–582.Web of ScienceGoogle Scholar

[4]

Dorfer, G.—Dorninger, D.—Länger, H.: *On the structure of numerical event spaces*, Kybernetika **46** (2010), 971–981.Google Scholar

[5]

Dorninger, D.: *On the structure of generalized fields of events*, Contr. General Algebra **20** (2012), 29–34.Google Scholar

[6]

Dorninger, D.—Länger, H.: *On a characterization of physical systems by spaces of numerical events*, ARGESIM Report **35** (2009), 601–607.Google Scholar

[7]

Dorninger, D.—Länger, H.: *Testing for classicality of a physical system*, Intern. J. Theor. Phys. **52** (2013), 1141–1147.CrossrefGoogle Scholar

[8]

Dorninger, D.—Länger, H.: *Probability measurements characterizing the classicality of a physical system*, Rep. Math. Phys. **73** (2014), 127–135.Web of ScienceCrossrefGoogle Scholar

[9]

Godowski, R. M.: *Commutativity in orthomodular posets*, Rep. Math. Phys. **18** (1980), 347–351.CrossrefGoogle Scholar

[10]

Klukowski, J.: *On the representation of Boolean orthomodular partially ordered sets*, Demonstratio Math. **8** (1975), 405–423.Google Scholar

[11]

Mackey, G. W.: *Mathematical Foundations of Quantum Mechanics*, Dover Publ., Mineola, NY, 2004.Google Scholar

[12]

Mączyński, M. J.—Traczyk, T.: *A characterization of orthomodular partially ordered sets admitting a full set of states*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. **21** (1973), 3–8.Google Scholar

[13]

Navara, M.: *On generating finite orthomodular sublattices*, Tatra Mt. Math. Publ. **10** (1997), 109–117.Google Scholar

[14]

Navara, M.—Pták, P.: *Almost Boolean orthomodular posets*, J. Pure Appl. Algebra **60** (1989), 105–111.CrossrefGoogle Scholar

[15]

Pták, P.: *Concrete quantum logics*, Internat. J. Theoret. Phys. **39** (2000), 827–837.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.