Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year


IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 68, Issue 3

Issues

Structural properties of algebras of S-probabilities

Dietmar Dorninger / Helmut Länger
  • Institute of Discrete Mathematics and Geometry TU Wien Wiedner Hauptstraβe 8–10 A–1040 Vienna Austria
  • Department of Algebra and Geometry Palacký University Olomouc 17. listopadu 12 CZ–771 46 Olomouc Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-18 | DOI: https://doi.org/10.1515/ms-2017-0118

Abstract

Let S be a set of states of a physical system. The probabilities p(s) of the occurrence of an event when the system is in different states sS define a function from S to [0, 1] called a numerical event or, more precisely, an S-probability. A set of S-probabilities comprising the constant functions 0 and 1 which is structured by means of the addition and order of real functions in such a way that an orthomodular partially ordered set arises is called an algebra of S-probabilities, a structure significant as a quantum-logic with a full set of states. The main goal of this paper is to describe algebraic properties of algebras of S-probabilities through operations with real functions. In particular, we describe lattice characteristics and characterize Boolean features. Moreover, representations by sets are considered and pertinent examples provided.

MSC 2010: Primary 06C15; Secondary 03G12, 81P16

Keywords: algebra of S-probabilities; lattice properties; concrete quantum logic; infimum faithful logic; Boolean algebra

Support of the research of the second author by the Austrian Science Fund (FWF), project I 1923-N25, by ÖAD, project CZ 04/2017, as well as by IGA, project PřF 2018 012, is gratefully acknowledged.

References

  • [1]

    Beltrametti, E. G.—Cassinelli, G.: The Logic of Quantum Mechanics, Addison-Wesley, Reading, Mass., 1981.Google Scholar

  • [2]

    Beltrametti, E. G.—Mączyński, M. J.: On a characterization of classical and nonclassical probabilities, J. Math. Phys. 32 (1991), 1280–1286.CrossrefGoogle Scholar

  • [3]

    Dorfer, G.—Dorninger, D.—Länger, H.: On algebras of multidimensional probabilities, Math. Slovaca 60 (2010), 571–582.Web of ScienceGoogle Scholar

  • [4]

    Dorfer, G.—Dorninger, D.—Länger, H.: On the structure of numerical event spaces, Kybernetika 46 (2010), 971–981.Google Scholar

  • [5]

    Dorninger, D.: On the structure of generalized fields of events, Contr. General Algebra 20 (2012), 29–34.Google Scholar

  • [6]

    Dorninger, D.—Länger, H.: On a characterization of physical systems by spaces of numerical events, ARGESIM Report 35 (2009), 601–607.Google Scholar

  • [7]

    Dorninger, D.—Länger, H.: Testing for classicality of a physical system, Intern. J. Theor. Phys. 52 (2013), 1141–1147.CrossrefGoogle Scholar

  • [8]

    Dorninger, D.—Länger, H.: Probability measurements characterizing the classicality of a physical system, Rep. Math. Phys. 73 (2014), 127–135.Web of ScienceCrossrefGoogle Scholar

  • [9]

    Godowski, R. M.: Commutativity in orthomodular posets, Rep. Math. Phys. 18 (1980), 347–351.CrossrefGoogle Scholar

  • [10]

    Klukowski, J.: On the representation of Boolean orthomodular partially ordered sets, Demonstratio Math. 8 (1975), 405–423.Google Scholar

  • [11]

    Mackey, G. W.: Mathematical Foundations of Quantum Mechanics, Dover Publ., Mineola, NY, 2004.Google Scholar

  • [12]

    Mączyński, M. J.—Traczyk, T.: A characterization of orthomodular partially ordered sets admitting a full set of states, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 3–8.Google Scholar

  • [13]

    Navara, M.: On generating finite orthomodular sublattices, Tatra Mt. Math. Publ. 10 (1997), 109–117.Google Scholar

  • [14]

    Navara, M.—Pták, P.: Almost Boolean orthomodular posets, J. Pure Appl. Algebra 60 (1989), 105–111.CrossrefGoogle Scholar

  • [15]

    Pták, P.: Concrete quantum logics, Internat. J. Theoret. Phys. 39 (2000), 827–837.CrossrefGoogle Scholar

About the article


Received: 2016-06-14

Accepted: 2017-03-01

Published Online: 2018-05-18

Published in Print: 2018-06-26


Citation Information: Mathematica Slovaca, Volume 68, Issue 3, Pages 485–490, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0118.

Export Citation

© 2018 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in