## Abstract

We define a truncated Euler polynomial *E*_{m,n}(*x*) as a generalization of the classical Euler polynomial *E _{n}*(

*x*). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial.

Show Summary Details# Truncated euler polynomials

## Abstract

## References

## About the article

More options …# Mathematica Slovaca

More options …

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year

IMPACT FACTOR 2017: 0.314

5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339

Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2016: 0.24

- Online
- ISSN
- 1337-2211

Takao Komatsu / Claudio Pita-Ruiz

30,00 € / $42.00 / £23.00

Get Access to Full TextWe define a truncated Euler polynomial *E*_{m,n}(*x*) as a generalization of the classical Euler polynomial *E _{n}*(

MSC 2010: Primary 11B68; Secondary 11B83, 11B37, 05A15, 05A19

Keywords: Euler polynomials; truncated Euler polynomials; Bernoulli polynomials; hypergeometric Bernoulli polynomials

- [1]
Hassen, A.—Nguyen, H. D.:

*Hypergeometric Bernoulli polynomials and Appell sequences*, Int. J. Number Theory**4**(2008), 767–774.CrossrefWeb of ScienceGoogle Scholar - [2]
Hassen, A.—Nguyen, H. D.:

*Hypergeometric zeta functions*, Int. J. Number Theory**6**(2010), 99–126.CrossrefGoogle Scholar - [3]
Kamano, K.:

*Sums of products of hypergeometric Bernoulli numbers*, J. Number Theory**130**(2010), 2259–2271.CrossrefWeb of ScienceGoogle Scholar - [4]
Kim, D. S.—Kim, T.:

*Some identities of Frobenius*-*Euler polynomials arising from umbral calculus*, Adv. Difference Equ.**2012**(2012), #196.Web of ScienceCrossrefGoogle Scholar - [5]
Komatsu, T.:

*Hypergeometric Cauchy numbers*, Int. J. Number Theory**9**(2013), 545–560.CrossrefWeb of ScienceGoogle Scholar - [6]
Komatsu, T.:

*Incomplete poly*-*Cauchy numbers*, Monatsh. Math.**180**(2016), 271–288.CrossrefGoogle Scholar - [7]
Komatsu, T.—Liptai, K.—Mező, I.:

*Incomplete poly*-*Bernoulli numbers associated with incomplete Stirling numbers*, Publ. Math. Debrecen**88**(2016), 357–368.Web of ScienceCrossrefGoogle Scholar - [8]
Komatsu, T.—Mező, I.—Szalay, L.:

*Incomplete Cauchy numbers*, Acta Math. Hungar.**149**(2016), 306–323.CrossrefGoogle Scholar - [9]
Pita, C.:

*Carlitz*-*type and other Bernoulli identities*, J. Integer Seq.**19**(2016), Article 16.1.8.Google Scholar - [10]
Sloane, N. J. A.:

*The On*-*Line Encyclopedia of Integer Sequences*, available online at http://oeis.org.

**Received**: 2016-09-16

**Accepted**: 2016-11-13

**Published Online**: 2018-05-18

**Published in Print**: 2018-06-26

**Citation Information: **Mathematica Slovaca, Volume 68, Issue 3, Pages 527–536, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0122.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.