[1]

Bacani, J. B.—Rabago, J. F. T.: *On linear recursive sequences with coefficients in arithmetic*-*geometric progressions*, Appl. Math. Sci. **52** (2015), 2595–2607.Google Scholar

[2]

Brand, L.: *A sequence defined by a difference equation*, Amer. Math. Monthly **62** (1955), 489–492.CrossrefGoogle Scholar

[3]

Clark, C. W.: *A delayed recruitement of a population dynamics with an application to baleen whale population*, J. Math. Biol. **3** (1976), 381–391.CrossrefGoogle Scholar

[4]

De Weger, B. M. M.: *Padua and Pisa are exponentially far apart*, Publ. Mat. **41** (1997), 631–651.CrossrefGoogle Scholar

[5]

Elsayed, E. M.: *On a system of two nonlinear difference equations of order two*, Proc. Jangjeon Math. Soc. **18** (2015), 353–368.Google Scholar

[6]

Elsayed, E. M.—Ibrahim, T. F.: *Periodicity and solutions for some systems of nonlinear rational difference equations*, Hacet. J. Math. Stat. **44** (2015), 1361–1390.Google Scholar

[7]

Elsayed, E. M.: *Solution for systems of difference equations of rational form of order two*, Comp. Appl. Math. **33** (2014), 751–765.CrossrefGoogle Scholar

[8]

Fulford, G.—Forrester, P.—Jones, A.: *Modelling with Differential and Difference Equations*, Cambridge University Press, 1997.Google Scholar

[9]

Halim, Y.: *Global character of systems of rational difference equations*, Electron. J. Math. Analysis Appl. **3** (2015), 204–214.Google Scholar

[10]

Halim, Y.: *Form and periodicity of solutions of some systems of higher*-*order difference equations*, Math. Sci. Lett. **5** (2016), 79–84.CrossrefGoogle Scholar

[11]

Halim, Y.: *A system of difference equations with solutions associated to Fibonacci numbers*, Int. J. Difference Equ. **11** (2016), 65–77.Google Scholar

[12]

Halim, Y.—Touafek, N.—Elsayed, E. M.: *Closed forme solution of some systems of rational difference equations in terms of Fibonacci numbers*, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. **21** (2014), 473–486.Google Scholar

[13]

Halim, Y.—Touafek, N.—Yazlik, Y.: *Dynamic behavior of a second*-*order nonlinear rational difference equation*, Turkish J. Math. **39** (2015), 1004–1018.CrossrefWeb of ScienceGoogle Scholar

[14]

Halim, Y.—Bayram, M.: *On the solutions of a higher*-*order difference equation in terms of generalized Fibonacci sequences*, Math. Methods Appl. Sci. **39** (2016), 2974–2982.CrossrefWeb of ScienceGoogle Scholar

[15]

Halim, Y.—Rabago, J. F. T.: *On some solvable systems of difference equations with solutions associated to Fibonacci numbers*, Electron. J. Math. Analysis Appl. **5** (2017), 166–178.Google Scholar

[16]

Khaliq, A.—Elsayed, E. M.: *Qualitative properties of difference equation of order six*, Mathematics **24** (2016), 14 pp.Web of ScienceGoogle Scholar

[17]

Larcombe, P. J.—Rabago, J. F. T.: *On the Jacobsthal, Horadam and geometric mean sequences*, Bull. Inst. Combin. Appl. **76** (2016), 117–126.Google Scholar

[18]

Mickens, R. E.: *Difference Equations*: *Theory*, *Applications and Advanced Topics*, 3rd edition, Chapman and Hall/CRC, 2015.Google Scholar

[19]

Shannon, A. G.—Anderson, P. G.—Horadam, A. F.: *Properties of Cordonnier*, *Perrin and Van der Laan numbers*, Int. J. Math. Educ. Sci. Technol. **37** (2006), 825–831.CrossrefGoogle Scholar

[20]

Rabago, J. F. T.: *Effective methods on determining the periodicity and form of solutions of some systems of non*-*linear difference equations*, Int. J. Dyn. Syst. Differ. Equ. **7** (2017), 112–135.Google Scholar

[21]

Rabago, J. F. T.—Halim, Y.: *Supplement to the paper of Halim, Touafek and Elsayed: Part I*, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. **24** (2017), 121–131.Google Scholar

[22]

Stević, S.: *Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences*, Electron. J. Qual. Theory Differ. Equ. **67** (2014), 1–15.Web of ScienceGoogle Scholar

[23]

Stević, S.: *On a system of difference equations*, Appl. Math. Comput. **218** (2011), 3372–3378.Google Scholar

[24]

Tollu, D. T.—Yazlik, Y.—Taskara, N.: *On the solutions of two special types of Riccati difference equation via Fibonacci numbers*, Adv. Differ. Equ. **174** (2013), 7 pp.Web of ScienceGoogle Scholar

[25]

Tollu, D. T.—Yazlik, Y.—Taskara, N.: *The solutions of four Riccati difference equations associated with Fibonacci numbers*, Balkan J. Math. **2** (2014), 163–172.Google Scholar

[26]

Tollu, D. T.—Yazlik, Y.—Taskara, N.: *On fourteen solvable systems of difference equations*, Appl. Math. Comput. **233** (2014), 310–319.Web of ScienceGoogle Scholar

[27]

Touafek, N.: *On some fractional systems of difference equations*, Iranian J. Math. Sci. Info. **9** (2014), 303–305.Google Scholar

[28]

Touafek, N.: *On a second order rational difference equation*, Hacet. J. Math. Stat. **41** (2012), 867–874.Google Scholar

[29]

Touafek, N.—Halim, Y.: *Global attractivity of a rational difference equation*, Math. Sci. Lett. **3** (2013), 161–165.Google Scholar

[30]

Touafek, N.—Halim, Y.: *On max type difference equations*: *expressions of solutions*, Int. J. Nonlinear Sci. **11** (2011), 396–402.Google Scholar

[31]

Touafek, N.—Elsayed, E. M.: *On the periodicity of some systems of nonlinear difference equations*, Bull. Math. Soc. Sci. Math. Roum. **55** (2012), 217–224.Google Scholar

[32]

Touafek, N.—Elsayed, E. M.: *On the solutions of systems of rational difference equations*, Math. Comput. Modelling **55** (2012), 1987–1997.CrossrefWeb of ScienceGoogle Scholar

[33]

Yazlik, Y.—Tollu, D. T.—Taskara, N.: *On the solutions of difference equation systems with Padovan numbers*, Appl. Math. J. Chin. Univ. **12** (2013), 15–20.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.