[1]

Aamri, A.—El-Moutawakil, D.: *Some new common fixed point theorems under strict contractive conditions*, Math. Anal. Appl. **270** (2002), 181–188.CrossrefGoogle Scholar

[2]

Abbas, M.—Rhoades, B.E.: *Common fixed points results for noncommuting mappings without continuity in generalized metric spaces*, Appl. Math. Comput. **215** (2009), 262–269.Google Scholar

[3]

Akkouchi, M.: *Well posedness and common fixed points for two pairs of maps using weak contractivity*, Demonstratio Math. **46** (2012), 373–382.Google Scholar

[4]

Alber, Ya. I.—Guerre-Delabrierre, S.: *Principle of weakly contractive maps in Hilbert spaces*. In: New Results in Operator Theory and its Applications, Adv. Appl. Math. 98 (Y. Gahbery, Yu. Librich, eds.), Birkhauser Verlag Basel, 1997, pp. 7–22.Google Scholar

[5]

Ali, J.—Imdad, M.: *An implicit function implies several contractive conditions*, Sarajevo J. Math. **17** (2008), 269–285.Google Scholar

[6]

Aydi, H.—Chauchan, S.—Radenović, S: *Fixed points of weakly compatible maps in G*-*metric spaces satisfying common limit range property*, Facta Univ. Ser. Math. Inform. **28** (2013), 197–210.Google Scholar

[7]

Beg, I.—Abbas, M.: *Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition*, Fixed Point Theory Appl. **2006** (2006), Article ID 74503.Google Scholar

[8]

Berinde, V.: *Approximating fixed points of weak φ*-*contractions using the Picard iteration*, Fixed Point Theory **4** (2003), 131–142.Google Scholar

[9]

Branciari, A.: *A fixed point theorem for mappings satisfying a general contractive condition of integral type*, Int. J. Math. Math. Sci. **29** (2002), 531–536.CrossrefGoogle Scholar

[10]

Choudhury, B. S.—Konar, P.—Rhoades, B. E.—Metyiam N.: *Fixed points of generalized weakly contractive mappings*, Nonlinear Anal. **74** (2011), 2116–2126.CrossrefGoogle Scholar

[11]

Dorić, D.: *Common fixed points for generalized* (*φ*,*ψ*) -*weak contractions*, Appl. Math. Lett. **22** (2009), 1986–2000.Google Scholar

[12]

Imdad, M.—Pant, M.—Chauhan, S.: *Fixed point theorems in Manger spaces using* *CLR*_{(S, T)} -*property and applications*, J. Nonlinear Anal. Optim. **312** (2012), 225–237.Google Scholar

[13]

Imdad, M.—Chauhan, S.: *Employing common limit range property to prove unified metrical common fixed point theorems*, Intern. J. Anal. **2013**, Article ID 763261.Google Scholar

[14]

Imdad, M.—Chauhan, S.—Kadelburg, Z.: *Fixed point theorems for mappings with common limit range property satisfying generalized* (*ψ*; *φ*)-*weak contractive conditions*, Math. Sci. **7** (2013), .CrossrefGoogle Scholar

[15]

Jungck, G.: *Compatible mappings and common fixed points*, Int. J. Math. Math. Sci. **9** (1986), 771–779.CrossrefGoogle Scholar

[16]

Jungck, G.: *Common fixed points for noncommuting nonself mappings on nonnumeric spaces*, Far East J. Math. Sci. **4** (1996), 195–215.Google Scholar

[17]

Karapinar, E.—Patel, D. K.—Imdad, M.—Gopal, D.: *Some nonunique common fixed point theorems in symmetric spaces through CLR*_{(S, T)} -*property*, Int. J. Math. Math. Sci. **2013**, Article ID 753965, 8 pp.Google Scholar

[18]

Khan, M. S.—Swaleh, M.—Sessa, S: *Fixed point theorems by altering distance between two points*, Bull. Aust. Math. Soc. **30** (1984), 1–9.CrossrefGoogle Scholar

[19]

Kumar, S.—Chung, R.—Kumar, P.: *Fixed point theorems for compatible mappings satisfying contractive conditions of integral type*, Soochow J. Math. **33** (2007), 181–185.Google Scholar

[20]

Liu, Y.—Wu, J.—Li, Z.: *Common fixed points of single*-*valued and multivalued maps*, Int. J. Math. Math. Sci. **19**, (2005), 3045–3055.Google Scholar

[21]

Matkowski, J.: *Fixed point theorems for mappings with a contractive iterate at a point*, Proc. Amer. Math. Soc. **62** (1997), 344–348.Google Scholar

[22]

Pant, R. P.: *Common fixed point theorems for noncommuting mappings*, J. Math. Anal. Appl. **188** (1994), 436–440.CrossrefGoogle Scholar

[23]

Pant, R. P.: *Common fixed point theorems for four mappings*, Bull. Calcutta Math. Soc. **9** (1998), 281–287.Google Scholar

[24]

Pant, R. P.: *Common fixed points for contractive maps*, J. Math. Anal. Appl. **226** (1998), 251–258.CrossrefGoogle Scholar

[25]

Pant, R. P.: *R*-*weak commutativity and common fixed points of noncompatible maps*, Ganita **99** (1999), 19–26.Google Scholar

[26]

Pant, R. P.: *R*-*weak commutativity and common fixed points*, Soochow J. Math. **25**, (1999), 39–42.Google Scholar

[27]

Pathak, H. K.—Rodriguez-LόPez, R.—Verma, R. K.: *A common fixed point theorem of integral type using implicit relation*, Nonlinear Funct. Anal. Appl. **15** (2010), 1–12.Google Scholar

[28]

Pathak, H. K.—Rodriguez-LόPez, R.—Verma, R. K.: *A common fixed point theorem using implicit relation and property* (*E*.*A*) *in metric spaces*, Filomat **21** (2007), 211–234.CrossrefGoogle Scholar

[29]

Popa, V.: *Fixed point theorems for implicit contractive mappings*, Stud. Cerc. Ştiinţ. Ser. Mat. Univ. Bacău **7** (1997), 127–134.Google Scholar

[30]

Popa, V.: *On some fixed point theorems for compatible mappings satisfying an implicit relation*, Demonstratio Math. **32** (1999), 157–163.Google Scholar

[31]

Popa, V.—Mocanu, M.: *A new viewpoint in the study of fixed points for mappings satisfying a contractive condition of integral type*, Bul. Inst. Politeh. Iaşi Sec. Mat. Mec. Teor. Fiz. **53** (2007), 269–286.Google Scholar

[32]

Popa, V.—Mocanu, M.: *Altering distances and common fixed points under implicit relations*, Hacet. J. Math. Stat. **38** (2009), 329–337.Google Scholar

[33]

Popa, V.—Patriciu, A.-M.: *A general fixed point theorem for a pair of self mappings with common limit range property in G*-*metric spaces*, Facta Univ. Ser. Math. Inf. **29** (2014), 351–370.Google Scholar

[34]

Popescu, O.: *Fixed point for (φ*, *ψ)* -*weak contractions*, Appl. Math. Lett. **24** (2011), 1–9.Web of ScienceCrossrefGoogle Scholar

[35]

Rhoades, B. E.: *Some theorems of weakly contractive maps*, Nonlinear Anal. **47** (2001), 2683–2693.CrossrefGoogle Scholar

[36]

Rhoades, B. E.: *Two fixed point theorems for mappings satisfying a general contractive condition of integral type*, Int. J. Math. Math. Sci. **63** (2003), 4007–4013.Google Scholar

[37]

Sastri, K. P.—Babu, G. V. R.: *Fixed point theorems in metric spaces by altering distances*, Bull. Calcutta Math. Soc. **90** (1998), 175–182.Google Scholar

[38]

Sastri, K. P.—Babu, G. V. R.: *Some fixed point theorems by altering distances between two points*, Indian J. Pure Appl. Math. **30** (1999), 641–647.Google Scholar

[39]

Sintunavarat, W.—Kumam, P: *Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces*, J. Appl. Math. (2011), Article ID 637958.Web of ScienceGoogle Scholar

[40]

Zhang, Q.—Song, Y.: *Fixed point theorems for generalized φ *-*weak contractions*, Appl. Math. Lett. **22**, (2009), 75–78.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.