Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2017: 0.26

See all formats and pricing
More options …
Volume 68, Issue 3


Productively sequential spaces

Szymon Dolecki / Frédéric Mynard
Published Online: 2018-05-18 | DOI: https://doi.org/10.1515/ms-2017-0133


We characterize productively sequential spaces, that is, spaces whose product with every strongly sequential space is sequential, equivalently strongly sequential. It turns out that a regular topology is productively sequential if and only if it is sequential and bi-quasi-k.

Keywords: sequential space; strongly sequential space; product space; convergence space

MSC 2010: Primary 54A20; 54B10; 54D55; Secondary 54B30


  • [1]

    Dolecki, S.: Convergence-theoretic methods in quotient quest, Topology Appl. 73 (1996), 1–21.CrossrefGoogle Scholar

  • [2]

    Dolecki, S.—Mynard, F.: Convergence-theoretic mechanisms behind product theorems, Topology Appl. 104 (2000), 67–99.CrossrefGoogle Scholar

  • [3]

    Dolecki, S.—Mynard, F.: Convergence Foundations of Topology, World Scientific, 2016.Google Scholar

  • [4]

    Hofmann, K. H.—Lawson, J. D.: The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246 (1978), 285–309.CrossrefGoogle Scholar

  • [5]

    Jordan, F.—Mynard, F.: Productively Fréchet spaces, Czech. Math. J. 54(129) (2004), 981–990.CrossrefGoogle Scholar

  • [6]

    Michael, E.: A quintuple quotient quest, Gen. Topology Appl. 2 (1972), 91–138.CrossrefGoogle Scholar

  • [7]

    Mynard, F.: Strongly sequential spaces, Comment. Math. Univ. Carolinae, 41 (2000), 143–153.Google Scholar

  • [8]

    Mynard, F.: Coreflectively modified continuous duality applied to classical product theorems, Appl. Gen. Top. 2(2) (2002), 119–154.Google Scholar

  • [9]

    Mynard, F.: More on strongly sequential spaces, Comment. Math. Univ. Carolinae, 43(3) (2002), 525–530.Google Scholar

  • [10]

    Mynard, F.: Coreflectively modified duality, Rocky Mountain J. of Math. 34(2) (2004), 733–758.Google Scholar

  • [11]

    Tanaka. Y.: Tanaka spaces and products of sequential spaces, Comm. Math. Univ. Carol, 48(3) (2007), 529–540.Google Scholar

About the article

Received: 2016-09-09

Accepted: 2016-11-10

Published Online: 2018-05-18

Published in Print: 2018-06-26

Citation Information: Mathematica Slovaca, Volume 68, Issue 3, Pages 667–676, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0133.

Export Citation

© 2018 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in