Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year


IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2016: 0.24

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 68, Issue 3

Issues

Euler classes of vector bundles over iterated suspensions of real projective spaces

Aniruddha C. Naolekar / Ajay Singh Thakur
Published Online: 2018-05-18 | DOI: https://doi.org/10.1515/ms-2017-0134

Abstract

We show that when k ≠ 2, 4, 8 the Euler class of any vector bundle over Σkℝℙm is zero if the rank of the bundle is not m + k, provided that m ≠ 3 when k = 6. If k = 2, 4, 8 we show that the Euler class of any vector bundle over Σkℝℙm is zero whenever the rank of the bundle is not kr + k, provided that m ≠ 6, 7 when k = 2, where r is the largest integer such that krm.

Keywords: Euler class; Stiefel-Whitney class; W-triviality

MSC 2010: 57R20

The research of second-named author has been supported by Indian Statistical Institute, Bangalore and DST-Inspire Faculty Scheme (IFA-13-MA-26).

References

  • [1]

    Atiyah, M.—Hirzebruch, F.: Bott periodicity and the parallelizability of the spheres, Proc. Cambridge Philos. Soc. 57 (1961), 223–226.CrossrefGoogle Scholar

  • [2]

    Guijarro, L.—Schick, T.—Walschap, G.: Bundles with spherical Euler class, Pacific J. Math. 27 (2002), 377–392.Google Scholar

  • [3]

    Čadek, M.—Vanžura, J.: On the classification of oriented bundles over 9-complexes. In: Proc. of Winter school “Geometry and Physics”, Circolo Matematico di Palermo, Palermo, Rend. Circ. Mat. Palermo (2) Suppl. 37 (1994), pp. 33–40.Google Scholar

  • [4]

    Fujii, M.: KO-groups of projective spaces, Osaka J. Math. 4 (1967), 141–149.Google Scholar

  • [5]

    Malyĭ, B. D.: The Euler classes of stably equivalent vector bundles, Izv. Akad. SSSR Ser. Mat. 38 (1974), 107–126.Google Scholar

  • [6]

    Milnor, J.—Stasheff, J.: Characteristic Classes, Princeton Univ. Press, Princeton, 1974.Google Scholar

  • [7]

    Naolekar, A. C.: Realizing cohomology classes as Euler classes, Math. Slovaca 62 (2012), 949–966.Web of ScienceGoogle Scholar

  • [8]

    Tanaka, R.: On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspension spaces, Homology Homotopy Appl. 12 (2010), 357–366.Web of ScienceCrossrefGoogle Scholar

  • [9]

    Walschap, G.: The Euler class as a cohomology generator, Illinois J. Math. 46 (2002), 165–169.Google Scholar

  • [10]

    Woodward, L. M.: The classification of orientable vector bundles over CW-complexes of low dimensions, Proc. Royal Soc. Edinburgh Sect. A 92(3-4) (1982), 175–179.CrossrefGoogle Scholar

About the article


Received: 2016-02-18

Accepted: 2016-09-07

Published Online: 2018-05-18

Published in Print: 2018-06-26


Citation Information: Mathematica Slovaca, Volume 68, Issue 3, Pages 677–684, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0134.

Export Citation

© 2018 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in