[1]

Acar, T.: (*p*, *q*)-*generalization of Szász*-*Mirakyan operators*, Math. Methods Appl. Sci. **39(10)** (2016), 2685–2695.CrossrefGoogle Scholar

[2]

Acar, T.—Aral, A.—Mohiuddine, S. A.: *Approximation by bivariate* (*p*, *q*)-*Bernstein*-*Kantorovich operators*, Iran. J. Sci. Technol. Trans. A Sci. (2016), .CrossrefGoogle Scholar

[3]

Acar, T.—Aral, A.—Mohiuddine, S. A.: *On Kantorovich modifications of* (*p*, *q*)-*Baskakov operators*, J. Inequal. Appl. (2016), 2016: **98**.CrossrefGoogle Scholar

[4]

Acar, T.—Agrawal, P. N.—Kumar, S.: *On a modification of* (*p*, *q*)-*Szasz*-*Mirakyan operators*, Comp. Anal. Oper. Theo. **12** (2018), 155–167.CrossrefGoogle Scholar

[5]

Aral, A.—Gupta, V.: *Generalized q*-*Baskakov operators*, Math. Slovaca **61** (2011), 619–634.Web of ScienceGoogle Scholar

[6]

Aral, A.—Gupta, V.: *Applications of* (*p*, *q*)-*gamma function to Szasz*-*Durrmeyer operators*, Publications de ľInstitut Mathematique, In Press.Google Scholar

[7]

Aral, A.—Gupta, V.: (*p*, *q*)-*Type beta functions of second kind*, Advances in Operator Theory *1(1)* (2016), 134–146.Web of ScienceGoogle Scholar

[8]

Burban, I.: *Two*-*parameter deformation of the oscillator albegra and* (*p*, *q*) *analog of two dimensional conformal field theory*, J. Nonlinear Math. Phys. **2(3–4)** (1995), 384–391.Google Scholar

[9]

Burban, I.—Klimyk, A. U.: *P*, *Q differentiation*, *P*, *Q integration and P*, *Q hypergeometric functions related to quantum groups*, Integral Transforms Spec. Funct. **2(1)** (1994), 15–36.CrossrefGoogle Scholar

[10]

Devore, R. A.—Lorentz G. G.: *Constructive Approximation*, Springer, Berlin, 1993.Google Scholar

[11]

Hounkonnou, M. N.—Desire, J.—Kyemba, B.: 𝓡(*p*, *q*)-*calculus: differentiation and integration*, SUT J. Math. **49(2)** (2013), 145–167.Google Scholar

[12]

Ibikli, E.—Gadjieva, E. A.: *The order of approximation of some unbounded function by the sequences of positive linear operators*, Turk. J. Math. **19(3)** (1995), 331–337.Google Scholar

[13]

Jagannathan, R.—Rao, K. S.: *Two*-*parameter quantum algebras*, *twin*-*basic numbers*, *and associated generalized hypergeometric series*. In: Proceedings of the International Conference on Number Theory and Mathematical Physics, 20–21 December 2005.Google Scholar

[14]

King, J. P.: *Positive linear operators which preserves x*^{2}, Acta. Math. Hungar. **99** (2003), 203–208.CrossrefGoogle Scholar

[15]

Lenze, B.: *On Lipschitz type maximal functions and their smoothness spaces*, Indag. Math. *50* (1988), 53–63.Google Scholar

[16]

Mursaleen, M.—Ansari, K. J.—Khan, A.: *On* (*p*, *q*)-*analogue of Bernstein operators*, Appl. Math. Comput. **266** (2015), 874–882.Web of ScienceGoogle Scholar

[17]

Mursaleen, M.—Ansari, K. J.—Khan, A.: *Some approximation results by* (*p*, *q*)-*analogue of Bernstein*-*Stancu operators*, Appl. Math. Comput. **264** (2015), 392–402 [Corrigendum: Appl. Math. Comput. **269** (2015), 744–746].Web of ScienceGoogle Scholar

[18]

Mursaleen, M.—Nasiruzzaman, Md.—Khan, A.—Ansari, K. J.: *Some approximation results on Bleimann*-*Butzer*-*Hahn operators defined by* (*p*, *q*)-*integers*, Filomat **30(3)** (2016), 639–648.CrossrefWeb of ScienceGoogle Scholar

[19]

Mursaleen, M.—Nasiruzzaman, Md.—Nurgali, A.: *Some approximation results on Bernstein*-*Schurer operators defined by* (*p*, *q*)-*integers*, J. Ineq. Appl. **2015** (2015), 249.CrossrefGoogle Scholar

[20]

Sadjang, P. N.: *On the fundamental theorem of* (*p*, *q*)-*calculus and some* (*p*, *q*)-*Taylor formulas*, arXiv:1309.3934 [math.QA].Google Scholar

[21]

Sahai, V.—Yadav, S.: *Representations of two parameter quantum algebras and p*, *q*-*special functions*, J. Math. Anal. Appl. **335** (2007), 268–279.Web of ScienceCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.