[1]

Arkin, J.—Hoggatt, V. E.—Strauss, E. G.: *On Euler’s solution of a problem of Diophantus*, Fibonacci Quart. **17** (1979), 333–339.Google Scholar

[2]

Bravo, J. J.—Luca, F.: *Powers of two in generalized Fibonacci sequences*, Rev. Colombiana Mat. **46** (2012), 67–79.Google Scholar

[3]

Bravo, J. J.—Luca, F.: *On a conjecture about repdigits in **k*-gene-ralized Fibonacci sequences, Publ. Math. Debrecen **82** (2013), 623–639.CrossrefGoogle Scholar

[4]

Bugeaud, Y.—Dujella, A.: *On a problem of Diophantus for higher powers*, Math. Proc. Cambridge Philos. Soc. **135** (2003), 1–10.CrossrefGoogle Scholar

[5]

Bugeaud, Y.—Gyarmati, K.: *On generalizations of a problem of Diophantus*, Illinois J. Math. **48** (2004), 1105–1115.Google Scholar

[6]

Cipu, M.—Trudgian, T.: *Searching for Diophantine quintuples*, Acta Arith. **173** (2016), 365–382.Web of ScienceGoogle Scholar

[7]

Cooper, C.—Howard, F. T.: *Some identities for **r*-Fibonacci numbers, Fibonacci Quart. **49** (2011), 231–243.Google Scholar

[8]

Dresden, G. P.—Du, Z.: *A simplified Binet formula for **k*-generalized Fibonacci numbers, J. Integer Seq. **17** (2014), Article 14.4.7.Google Scholar

[9]

Dujella, A.: *There are only finitely many Diophantine quintuples*, J. Reine Angew. Math. **566** (2004), 183–214.Google Scholar

[10]

Dujella.A.: *On the number of Diophantine m-tuples*, Ramanujan J. **15** (2008), 37–46.Web of ScienceCrossrefGoogle Scholar

[11]

Everest, G.—Van der Poorten, A.—Shparlinski, I.—Ward, T.: *Recurrence Sequences*. Math. Surveys Monogr. 104, American Mathematical Society, Providence, RI, 2003.Google Scholar

[12]

Fuchs, C.—Hutle, C.—Irmak, N.—Luca, F.—Szalay, L.: *Only finitely many Tribonacci Diophantine triples*, Math. Slovaca **67** (2017), 853–862.Web of ScienceGoogle Scholar

[13]

Fuchs, C.—Luca, F.—Szalay, L.: *Diophantine triples with values in binary recurrences*, Ann. Sc. Norm. Super. Pisa Cl. Sc. (5), **7** (2008), 579–608.Google Scholar

[14]

Gibbs, P.: *Some rational Diophantine sextuples*, Glas. Mat. Ser. III **41**(61) (2006), 195–203.CrossrefGoogle Scholar

[15]

Gómez Ruiz, C. A.—Luca, F.: *Tribonacci Diophantine Quadruples*, Glas. Mat. Ser. III **50**(70) (2015), 17–24.CrossrefGoogle Scholar

[16]

Gyarmati, K.—Sarkozy, A.—Stewart, C.L.: *On shifted products which are powers*, Mathematika **49** (2002), 227–230.CrossrefGoogle Scholar

[17]

Gyarmati, K.—Stewart, C. L.: *On powers in shifted products*, Glas. Mat. Ser. III **42**(62) (2007), 273–279.CrossrefGoogle Scholar

[18]

He, B.—Togbé, A.—Ziegler, V.: *There is no Diophantine quintuple*, arXiv:1610.04020v1, October 2016.Google Scholar

[19]

Hua, L. K.—Wang, Y.: *Applications of Number Theory to Numerical Analysis*, Translated from Chinese, Springer-Verlag, Berlin-New York; Kexue Chubanshe (Science Press), Beijing, 1981.Google Scholar

[20]

Luca, F.: *On shifted products which are powers*, Glas. Mat. Ser. III **40**(60) (2005), 13–20.CrossrefGoogle Scholar

[21]

Luca, F.—Szalay, L.: *Fibonacci Diophantine triples*, Glas. Mat. Ser. III **43**(63) (2008), 253–264.CrossrefGoogle Scholar

[22]

Luca, F.—Szalay, L.: *Lucas Diophantine Triples*, Integers **9** (2009), 441–457.Google Scholar

[23]

Miles, E. P. Jr.: *Generalized Fibonacci numbers and associated matrices*, Amer. Math. Monthly **67** (1960), 745–752.CrossrefGoogle Scholar

[24]

Miller, M. D.: *Mathematical notes: On generalized Fibonacci numbers*, Amer. Math. Monthly **78** (1971), 1108–1109.CrossrefGoogle Scholar

[25]

Wolfram, D. A.: *Solving generalized Fibonacci recurrences*, Fibonacci Quart. **36** (1998), 129–145.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.