Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia


IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2018: 0.29

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 68, Issue 5

Issues

On the n × n × n Rubik's Cube

Stefano Bonzio / Andrea Loi / Luisa Peruzzi
Published Online: 2018-10-20 | DOI: https://doi.org/10.1515/ms-2017-0158

Abstract

We state and prove the “First law of Cubology”, i.e. the solvability criterion, for the n × n × n Rubik's Cube.

MSC 2010: Primary 05E99; Secondary 20B99

Keywords: combinatorial puzzles; Rubik's Cube; Professor's Cube; group theory; Rubik's Revenge

References

  • [1]

    BANDELOW, C.: Inside Rubiks Cube and Beyond, Birkhäuser, 1982.Google Scholar

  • [2]

    BONZIO, S.: Algebraic Structures from Quantum and Fuzzy Logics, PhD Thesis, Università di Cagliari, 2016.Google Scholar

  • [3]

    BONZIO, S.—LOI, A.—PERUZZI, L.: The first law of cubology for the rubiks revenge, Math. Slovaca 67(3) (2017), 561–572.Google Scholar

  • [4]

    CHEN, J.: Group Theory and the Rubiks Cube, Notes, 2004.Google Scholar

  • [5]

    CZECH, B.—LARJO, K.—ROZALI, M.: Black holes as rubiks cubes, J. High Energy Phys. 2011(8) (2011), 143.Google Scholar

  • [6]

    DEMAINE, E. D.—DEMAINE, M. L.—EISENSTAT, S.—LUBIW, A.—WINSLOW, A.: Algorithms for Solving Rubiks Cubes. In: Algorithms – ESA (C. Demetrescu and M. M. Halld orsson, eds.): 19th Annual European Symposium, 2011.Google Scholar

  • [7]

    DIACONU, A.—LOUKHAOUKHA, K.: An improved secure image encryption algorithm based on Rubiks cube principle and digital chaotic cipher, Math. Probl. Eng. (2013).Google Scholar

  • [8]

    FREY, A.—SINGMASTER, D.: Handbook of Cubik Math, Enslow Publishers, 1982.Google Scholar

  • [9]

    JONES, M.—SHELTON, B.—WEAVERDYCK, M.: On god s number(s) for rubiks slide, College Math. J. 45(4) (2014), 267–275.Google Scholar

  • [10]

    JOYNER, D.: Adventures in Group Theory, The Johns Hopkins University Press, 2008.Google Scholar

  • [11]

    KOSNIOWSKI, C.: Conquer that Cube, Cambridge University Press, 1981.Google Scholar

  • [12]

    KUNKLE, D.—COOPERMAN, G.: Twenty-six moves suffice for rubiks cube. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, 2007, pp. 235–242.Google Scholar

  • [13]

    LARSEN, M. E.:Rubiks revenge: The group theoretical solution, Amer. Math. Monthly 92(6) (1985), 381–390.Google Scholar

  • [14]

    LEE, C. L.—HUANG, M. C.: The Rubiks cube problem revisited: a statistical thermodynamic approach, Eur. Phys. J. B. 64(2) (2008), 257–261.Google Scholar

  • [15]

    MILLER, J.: Move-Count Means with Cancellation and Word Selection Problems in Rubiks Cube Solution Approaches, PhD Thesis, Kent State University, 2012.Google Scholar

  • [16]

    ROKICKI, T.: Towards god s number for Rubiks cube in the quarter-turn metric, College Math. J. 45(4) (2014), 242–242.Google Scholar

  • [17]

    ROKICKI, T.—KOCIEMBA, H.—DAVIDSON, M.—DETHRIDGE, J.: The diameter of the Rubiks cube group is twenty, SIAM J. Discrete Math. 27(2) (2013), 1082–1105.Google Scholar

  • [18]

    VOLTE, E.—PATARIN, J.—NACHEF, V.: Zero knowledge with Rubiks cubes and non-abelian groups. In: Cryptology and Network Security (M. Abdalla, C. Nita-Rotaru, and R. Dahab, eds.): 12th International Conference, 2013, pp. 74–91.Google Scholar

About the article

Received: 2017-03-09

Accepted: 2017-08-15

Published Online: 2018-10-20

Published in Print: 2018-10-25


(Communicated by Anatolij Dvurečenskij)


Citation Information: Mathematica Slovaca, Volume 68, Issue 5, Pages 957–974, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.1515/ms-2017-0158.

Export Citation

© 2018 Mathematical Institute Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in