[1]

appell, J.: *Insiemi ed operatori “piccoli” in analisi funzionale*, Rend. Istit. Mat. Univ. Trieste 33 (2001), 127-199.Google Scholar

[2]

Appell, J.-D'aniello, E.-Väth, M.: *Some remarks on small sets*, Ric. Mat. 50 (2001), 255-274.Google Scholar

[3]

Chang, A.—Csörnyei M.: *The Kakeya needle problem and the existence of Besicovitch and Nikodym sets for rectifiable sets*, arXiv: 1609.01649v1Google Scholar

[4]

Chrząszcz, K.—Głąb, S.: *Isomorphism theorems for **σ*-ideals of microscopic sets in various metric spaces submitted for publication, aviable from: http://im0.p.lodz.pl/${}_{\setbox\z@\hbox{\frozen@everymath\@emptytoks\mathsurround\z@$\textstyle$}\mathaccent"0365{}}$sglab/szymon/ChrzaszczGlab.pdf

[5]

Czudek, K.-Kwela, A.-Mrozek, N.-Wołoszyn, W.: *Ideal-like properties of generalized microscopic sets*, Acta Math. Hungar. 150 (2016), 269-285.CrossrefGoogle Scholar

[6]

Davies, R. O.: *On accessibility of plane sets and differentiation of functions of two real variables*, Math. Proc. Cambridge Philos. Soc. 48 (1952), 215-232.CrossrefGoogle Scholar

[7]

De Guzman, K:. *Differentiations of Integrals in* ℝ^{n}. Lecture Notes in Math. 481, Springer-Verlag, 1975.Google Scholar

[8]

Falconer, K. J.: *Sets with prescribed projections and Nikodym sets*, Proc. London Math. Soc. 53 (1986) 48-64.Google Scholar

[9]

Horbaczewska, G.: *Microscopic sets with respect to sequences of functions*, Tatra Mt. Math. Publ. 58 (2014), 137-144.Google Scholar

[10]

Horbaczewska, G.-Karasińska, A.-Wagner-Bojakowska, E., *Properties of the σ-ideal of microscopic sets*. In: Traditional and Present-Day Topics in Real Analysis, Chapter 20, łódź University Press, łódź, 2013, pp. 325-344.Google Scholar

[11]

Karasińska, A.-Paszkiewicz, A.-Wagner-Bojakowska, E.: *A generalization of the notion of microscopic set*, Lith. Math. J. 10 (2017), to appear.Google Scholar

[12]

Karasińska, A.-Wagner-Bojakowska, E.: *Homeomorphisms of linear and planar sets of the first category into microscopic sets*, Topology Appl. 159 (2012), 1894-1898.Web of ScienceCrossrefGoogle Scholar

[13]

Kwela, A.: *Additivity of the ideal of microscopic sets*, Topology Appl. 204, (2016), 51-62.Web of ScienceCrossrefGoogle Scholar

[14]

Paszkiewicz, A.: *On some paradoxical sets on R and generalizations of microscopic sets*, preprintGoogle Scholar

[15]

Paszkiewicz, A.: *On methods of investigation of ideals contained in the ideals of nullsets*, preprint.Google Scholar

[16]

Paszkiewicz, A.-Wagner-Bojakowska, E.: *Fubini property for microscopic sets*, Tatra Mt. Math. Publ. 65 (2016), 143-149.Google Scholar

[17]

Recław, I.-Zakrzewski, P.: *Fubini properties of ideals*, Real Anal. Exchange 25(2) (1999-2000), 565-578.Google Scholar

[18]

Sogge, C. D.: *Concerning Nikodym-type sets in 3-dimensional curved spaces*, J. Amer. Math. Soc. **12** (1999), 1-31.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.