[1]

ALDAWISH, I., DARUS, M.: *Starlikness of q-differential operator involving quantum calculus*, Korean J. Math. 22(4) (2014), 699â€“709.Google Scholar

[2]

ALDWEBY, H., DARUS, M.: *A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator*, ISRN Appl. Math. 2013, Article ID 382312, 6 pp.Google Scholar

[3]

ALDWEBY, H., DARUS, M.: *Some subordination results on q-analogue of Ruscheweyh differential operator*, Abstr. Appl. Anal. 2014, Article ID 958563, 6 pp.Google Scholar

[4]

ARAL, A.: *On the generalized Picard and Gauss Weierstrass singular integrals*, J. Compu. Anal. Appl. 8(3) (2006), 249â€“261.Google Scholar

[5]

ARAL, A., GUPTA, V.: *Generalized q-Baskakov operators*, Math. Slovaca 61(4) (2011), 619â€“634.Google Scholar

[6]

ARAL, A., GUPTA, V.: *On the Durrmeyer type modification of the q-Baskakov type operators*, Nonlinear Anal. 72(3â€“4) (2010), 1171â€“1180.Google Scholar

[7]

ARAL, A., GUPTA, V.: *On q-Baskakov type operators*, Demonstr. Math. 42(1) (2009), 109â€“122.Google Scholar

[8]

ANASTASSIU, G. A., GAL, S. G.: *Geometric and approximation properties of generalized singular integrals*, J. Korean Math. Soci. 23(2) (2006), 425â€“443.Google Scholar

[9]

ANASTASSIU, G. A., GAL, S. G.: *Geometric and approximation properties of some singular integrals in the unit disk*, J. Inequal. Appl. 2006, Article ID 17231, 19 pp.Google Scholar

[10]

DZIOK, J., MURUGUSUNDARAMOORTHY, G., SOKOÅ, J.: *On certain class of meromorphic functions with positive coefficients*, Acta Math. Sci. Ser. B, Engl. Ed. 32(4) (2012), 1â€“16.Google Scholar

[11]

GANIGI, M. R., URALEGADDI, B. A.: *New criteria for meromorphic univalent functions*, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 33(81) (1989), 9â€“13.Google Scholar

[12]

HUDA, A., DARUS, M.: *Integral operator defined by q-analogue of Liu-Srivastava operator*, Stud. Univ. Babes-Bolyai Math. 58(4) (2013), 529â€“537.Google Scholar

[13]

JACKSON, F. H.: *On q-definite integrals*, Quart. J. Mech. Appl. Math. 41 (1910), 193â€“203.Google Scholar

[14]

JACKSON, F. H.: *On q-functions and a certain difference operator*, Proc. Roy. Soc. Edinburgh Sect. 46(2) (1909), 253â€“281.Google Scholar

[15]

KANAS, S., RÄ‚DUCANU, D.: *Some class of analytic functions related to conic domains*, Math. Slovaca 64(5) (2014), 1183â€“1196.Google Scholar

[16]

LIU, M. S.: *On a subclass of p-valent close to convex functions of type α and order β,*, J. Math. Study 30(1) (1997) (Chinese), 102â€“104.Google Scholar

[17]

MOHAMMED, A., DARUS, M.: *A generalized operator involving the q-hypergeometric function*, Mat. Vesnik 65(4) (2013), 454â€“465.Google Scholar

[18]

POMMERENKE, C.: *On meromorphic starlike functions*, Pacific J. Math. 13 (1963), 221â€“235.Google Scholar

[19]

ROGOSINSKI, W.: *On the coefficients of subordinate functions*, Proc. Lond. Math. Soc. 48(2) (1943), 48â€“82.Google Scholar

[20]

SEOUDY, T. M., AOUF, M. K.: *Coefficient estimates of new classes of q-starlike and q-convex functions of complex order*, J. Math. Inequ. 10(1) (2016), 135â€“145.Google Scholar

[21]

URALEGADDI, B. A., SOMANATHA, C.: *Certain differential operators for meromorphic functions*, Houston J. Math. 17(2) (1991), 279â€“284.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.