[1]

ALDAZ, J. M.—PÉREZ LÁZARO, J.: *Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities*, Trans. Amer. Math. Soc. 359 (2007), 2443–2461.CrossrefGoogle Scholar

[2]

ANDERSEN, K. F.—SAWYER, E. T.: *Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators*, Trans. Amer. Math. Soc. 308(2) (1988), 547–558.CrossrefGoogle Scholar

[3]

BOBER, J.—CARNEIRO, E.—HUGHES, K.—PIERCE, L. B.: *On a discrete version of Tanaka’s theorem for maximal functions*, Proc. Amer. Math. Soc. 140 (2012), 1669–1680.Web of ScienceCrossrefGoogle Scholar

[4]

BREZIS, H.—LIEB, E.: *A relation between pointwise convergence of functions and convergence of functionals*, Proc. Amer. Math. Soc. 88 (1983), 486–490.CrossrefGoogle Scholar

[5]

CARNEIRO, E.—HUGHES, K.: *On the endpoint regularity of discrete maximal operators*, Math. Res. Lett. 19 (2012), 1245–1262.CrossrefGoogle Scholar

[6]

CARNEIRO, E.—-MADRID, J.: *Derivative bounds for fractional maximal functions*, Trans. Amer. Math. Soc. 369 (2017), 4063–4092.Google Scholar

[7]

CARNEIRO, E.—MOREIRA, D.: *On the regularity of maximal operators*, Proc. Amer. Math. Soc. 136 (2008), 4395–4404.Web of ScienceCrossrefGoogle Scholar

[8]

CARNEIRO, E.—SVAITER, B. F.: *On the variation of maximal operators of convolution type*, J. Func. Anal. 265 (2013), 837–865.CrossrefGoogle Scholar

[9]

HAJŁASZ, P.—MALY, J.: *On approximate differentiability of the maximal function*, Proc. Amer. Math. Soc. 138 (2010), 165–174.CrossrefGoogle Scholar

[10]

HAJŁASZ, P.—ONNINEN, J.: *On boundedness of maximal functions in Sobolev spaces*, Ann. Acad. Sci. Fenn. Math. 29 (2004), 167–176.Google Scholar

[11]

KINNUNEN, J.: *The Hardy-Littlewood maximal function of a Sobolev function*, Israel J. Math. 100 (1997), 117–124.Google Scholar

[12]

KINNUNEN, J.—LINDQVIST, P.: *The derivative of the maximal function*, J. reine angew. Math. 503 (1998), 161–167.Google Scholar

[13]

KINNUNEN, J.—SAKSMAN, E.: *Regularity of the fractional maximal function*, Bull. London Math. Soc. 35 (2003), 529–535.CrossrefGoogle Scholar

[14]

KURKA, O.: *On the variation of the Hardy-Littlewood maximal function*, Ann. Acad. Sci. Fenn. Math. 40 (2015), 109–133.Google Scholar

[15]

LIU, F.: *A remark on the regularity of the discrete maximal operator*, Bull. Austral. Math. Soc. 95 (2017), 108–120.CrossrefGoogle Scholar

[16]

LIU, F.—CHEN, T.—WU, H.: *A note on the end-point regularity of the Hardy-Littlewood maximal functions*, Bull. Austral. Math. Soc. 94 (2016), 121–130.CrossrefGoogle Scholar

[17]

LIU, F.—MAO, S.: *On the regularity of the one-sided Hardy-Littlewood maximal functions*, Czechoslovak Math. J. 67 (2017), 219–234.Web of ScienceCrossrefGoogle Scholar

[18]

LIU, F.—MAO, S.: *Regularity of discrete multisublinear fractional maximal functions*, Sci. China Math. 60 (2017), 1461–1476.Web of ScienceCrossrefGoogle Scholar

[19]

LIU, F.—WU, H.: *On the regularity of the multisublinear maximal functions*, Canad. Math. Bull. 58 (2015), 808–817.CrossrefGoogle Scholar

[20]

LIU, F.—WU, H.: *Endpoint regularity of multisublinear fractional maximal functions*, Canad. Math. Bull. 60 (2017), 586–603.CrossrefGoogle Scholar

[21]

LIU, F.—WU, H.: *On the regularity of maximal operators supported by submanifolds*, J. Math. Anal. Appl. 453 (2017), 144–158.CrossrefWeb of ScienceGoogle Scholar

[22]

LUIRO, H.: *Continuity of the maixmal operator in Sobolev spaces*, Proc. Amer. Math. Soc. 135 (2007),243–251.Google Scholar

[23]

LUIRO, H.: *On the regularity of the Hardy-Littlewood maximal operator on subdomains of ℝ*^{d}, Proc. Edinburgh Math. Soc. 53 (2010), 211–237.Web of ScienceCrossrefGoogle Scholar

[24]

LUIRO, H.: *The variation of the maximal function of a radial function*, arXiv:1702.00669v1.Google Scholar

[25]

MADRID, J.: *Sharp inequalities for the variation of the discrete maximal function*, Bull. Austral. Math. Soc. 95 (2017), 94–107.CrossrefGoogle Scholar

[26]

PIERCE, L. B.: *On discrete fractional integral operators and mean values of Weyl sums*, Bull. London Math. Soc. 43 (2011), 597–612.Web of ScienceCrossrefGoogle Scholar

[27]

TANAKA, H.: *A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function*, Bull. Austral. Math. Soc. 65 (2002), 253–258.CrossrefGoogle Scholar

[28]

TEMUR, F.: *On regularity of the discrete Hardy-Littlewood maximal function*, arXiv:1303.3993v1.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.