[1]

ANTIĆ M.: *A class of four-dimensional CR submanifolds of the sphere ${\mathbb{S}}^{\mathrm{6}}\mathit{}\mathrm{(}\mathrm{1}\mathrm{)}$*, J. Geom. Phys. **110** (2016), 78–89.Google Scholar

[2]

ANTIĆ M.: *Four-dimensional CR submanifolds of the sphere ${\mathbb{S}}^{\mathrm{6}}\mathit{}\mathrm{(}\mathrm{1}\mathrm{)}$ with two-dimensional nullity distribution*, J. Math. Anal. Appl. **445** (2017), 1–12.Google Scholar

[3]

BEJANCU A.: *Geometry of CR-Submanifolds*, D. Reidel Publ., Dordrecht, 1986.Google Scholar

[4]

BOLTON, J.—DILLEN, F.—DIOOS, B.—VRANCKEN, L.: *Almost complex surfaces in the nearly Kähler ${\mathbb{S}}^{\mathrm{3}}\mathrm{\times}{\mathbb{S}}^{\mathrm{3}}$*, Tôhoku Math. J. **67** (2015), 1–17.Google Scholar

[5]

BOLTON, J.—VRANCKEN, L.—WOODWARD, L. M.: *On almost complex curves in the nearly Kähler 6-sphere*, Q. J. Math. **45** (1994), 407–427.Google Scholar

[6]

BUTRUILLE, J. B.: *Homogeneous nearly Kähler manifolds*. In: Handbook of PseudoRiemannian Geometry and Supersymmetry, RMA Lect. Math. Theor. Phys. 16, Eur. Math. Soc., Zürich, 2010, pp. 399–423.Google Scholar

[7]

DILLEN, F.—VERSTRAELEN, L.—VRANCKEN, L.: *Classification of totally real 3-dimensional submanifolds of ${\mathbb{S}}^{\mathrm{6}}\mathit{}\mathrm{(}\mathrm{1}\mathrm{)}$ with $K\mathrm{\ge}\mathrm{1}\mathrm{/}\mathrm{16}$*, J. Math. Soc. Japan **42** (1990), 565–584.Google Scholar

[8]

EJIRI, E.: *Totally real submanifolds in a 6-sphere*, Proc. Am. Math. Soc. **83** (1981), 759–763.Google Scholar

[9]

GRAY, A.: *The structure of nearly Kähler manifolds*, Math. Ann. **223** (1976), 233–248.Google Scholar

[10]

GRAY, A.—HERVELLA, L. M.: *The sixteen classes of almost Hermitian manifold and their linear invariants*, Ann. Math. Pura App. **123** (1980), 35–58.Google Scholar

[11]

HARVEY, R.—LAWSON, H. B.: *Calibrated Geometries*, Acta Math. **148** (1982), 47–157.Google Scholar

[12]

NAGY, P. A.: *Nearly Kähler geometry and Riemannian foliations*, Asian J. Math. **6** (2002), 481–504.Google Scholar

[13]

PODESTÀ, F.—SPIRO, A.: *6-dimensional nearly Kähler manifolds of cohomogeneity one*, J. Geom. Phys. **60**, (2010), 156–164.Google Scholar

[14]

PONGE, R.—RECKZIEGEL, H.: *Twisted products in pseudo-Riemannian geometry*, Geom. Dedicata **48** (1993), 15–25.Google Scholar

[15]

SEKIGAWA, K.: *Some CR-submanifolds in a 6-dimensional sphere*, Tensor, N. S. **41** (1984), 13–20.Google Scholar

[16]

UDDIN, S.: *On doubly warped and doubly twisted product submanifolds*, Int. Electron. J. Geom. **3** (2010), 35–39.Google Scholar

[17]

ZHANG, Y.—DIOOS, B.—HU, Z.—VRANCKEN, L.—WANG, X.: *Lagrangian submanifolds in the 6-dimensional nearly Kähler manifolds with parallel second fundamental form*, J. Geom. Phys. **108** (2016), 21–37.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.